Find two vectors orthogonal to both \(\vec{a}=(1,-3,1)\)and \(\vec{b}=(0,4,-1)\).
Solution
Setting up the array to compute the cross product
\[\begin{array}{c c c c c c}\xcancel{1} & -3 & 1 & 1 & -3 & \xcancel{1} \\\xcancel{0} & 4 & -1 & 0 & 4 & \xcancel{-1}\end{array}\]
gives
\[\begin{align*}\vec{a} \times \vec{b} &= (3 - 4, 0 + 1, 4 + 0) \\ &= (-1, 1, 4) \end{align*}\]
Check:
\[\begin{align*}(-1, 1, 4) \cdot (1, -3, 1) &= -1 - 3 + 4 = 0 \\ (-1, 1, 4) \cdot (0, 4, -1) &= 0 + 4 - 4 = 0\end{align*}\]
Therefore, one vector orthogonal to both \(\vec{a}\) and \(\vec{b}\) is \((-1,1,4)\).
Taking a scalar multiple of this vector, (say, its opposite vector) \((1,-1,-4)\) is sufficient for finding a second.