Determine the quotient and remainder for \((4x^3-11x-9) \div (2x-3), x \neq \frac{3}{2}\)
Solution
| |
|
|
|
\(2x^2\) |
\(+\) |
\(3x\) |
\(-\) |
\(1\) |
| |
\(2x-3\) |
\(4x^3\) |
\(+\) |
\(0x^2\) |
\(-\) |
\(11x\) |
\(-\) |
\(9\) |
| \(\textcolor{BrickRed}{2x^2(2x-3)}\) |
\(\rightarrow\) |
\(4x^3\) |
\(-\) |
\(6x^2\) |
|
|
|
|
| Subtract |
|
|
|
\(6x^2\) |
\(-\) |
\(11x\) |
|
|
| \(\textcolor{NavyBlue}{3x(2x-3)}\) |
\(\rightarrow\) |
|
|
\(6x^2\) |
\(-\) |
\(9x\) |
|
|
| Subtract |
|
|
|
|
\(-\) |
\(2x\) |
\(-\) |
\(9\) |
| \(\textcolor{Violet}{-1(2x-3)}\) |
\(\rightarrow\) |
|
|
|
\(-\) |
\(2x\) |
\(+\) |
\(3\) |
| Subtract |
|
|
|
|
|
|
\(-\) |
\(12\) |
The quotient is \(2x^2+3x-1\) and the remainder is \(-12\). Therefore,
\[\frac{4x^3-11x-9}{2x-3}=2x^2+3x-1-\frac{12}{2x-3}, x \neq \frac{3}{2}\]