Slide Notes

Glossary

All Slides

Difference of Squares

Difference of Cubes Example

Sum of Cubes Example 

Factoring Sum and Difference of Cubes

Factoring Sum and Difference of Cubes Summary

 

Check Your Understanding C

Factor the following polynomial:

(((a)*(A))*3.0)*(d) x 3 (((p)*(m))*1.0)*(A)(((b)*(A))*3.0)*(s)

 

There appears to be a syntax error in the question bank involving the question field of this question. The following error message may help correct the problem:

null

Preview Change entry mode 

(Click on Equation Editor Symbol to access the Equation Editor.)

The general forms for perfect cube polynomials are a3x3+b3=ax+ba2x2abx+b2

and a3x3b3=axba2x2+abx+b2.

We have  a3=((a)*(A))*3.0  and b3=(((b)*(A))*3.0)*(s) so

(((a)*(A))*3.0)*(d)x3(((p)*(m))*1.0)*(A)(((b)*(A))*3.0)*(s)=(((a)*(A))*1.0)*(d)x(((p)*(m))*2.0)*(A)(((b)*(A))*1.0)*(s)(((a)*(A))*2.0)*(d)x2(((p)*(m))*3.0)*(A)abs(A)x+((b)*(A))*2.0

(((a)*(A))*3.0)*(d)x3(((p)*(m))*1.0)*(A)(((b)*(A))*3.0)*(s) can also be factored using the factor theorem.

P((b)*(A))*3.0((a)*(A))*3.03=0, that is P(((((((b)*(O))*(V))*(E))*(R))*(a))*(A)) = 0 so (((a)*(A))*1.0)*(d)x(((p)*(m))*1.0)*(A)(((b)*(A))*1.0)*(s) is a factor.  The corresponding quadratic factor can be determined by long division, synthetic division or the "have and need" method.


Note: The corresponding quadratic factor cannot be factored further when factoring the sum or difference of cubes.

Paused Finished
Slide /