Factor \(x^4-10x^3+25x^2-25\) given there is no value \(x=a\), \(a \in \mathbb{R}\) such that \(P(a)=0\).
Solution
\[\textcolor{BrickRed}{x^4}-10x^3+25x^2\textcolor{NavyBlue}{-25}=(\textcolor{BrickRed}{x^2}+\blacksquare x+\textcolor{NavyBlue}{\blacksquare})(\textcolor{BrickRed}{x^2}+\blacksquare x+\textcolor{NavyBlue}{\blacksquare})\]
Let's start with \(5\) and \(-5\) and see if we can find a solution.
\[\textcolor{BrickRed}{x^4}-10x^3+25x^2\textcolor{NavyBlue}{-25}=(\textcolor{BrickRed}{x^2}+\blacksquare x\textcolor{NavyBlue}{+5})(\textcolor{BrickRed}{x^2}+\blacksquare x\textcolor{NavyBlue}{-5})\]
We can let the coefficients of the middle terms be \(m\) and \(n\).
\[x^4-10x^3+25x^2-25=(x^2+mx+5)(x^2+nx-5)\]
Expanding the expression gives
\(=x^4+nx^3+mx^3-5x^2+mnx^2+5x^2-5mx+5nx-25\)
\(=x^4+(n+m)x^3+mnx^2+(-5m+5n)x-25\)
Therefore,
\[\begin{align} n + m &= -10 \tag{1}\\ mn &= 25 \tag{2}\\ -5m+5n=0\quad\text{thus}\quad -m + n &= 0\qquad\qquad\qquad \tag{3} \end{align}\]