The CENTRE for EDUCATION
in MATHEMATICS and COMPUTING

Curve Sketching

In This Module

* We will revisit the algorithm for curve sketching and apply it to curves whose equations involve exponential,
logarithmic, and trigonometric functions.

Algorithm for Curve Sketching

Here is a quick review of the steps:

. Domain

. y-intercept

. Discontinuities

. x-intercept(s)

. Horizontal asymptote(s)

. Obligue asymptote(s)

. Critical point(s) (where f’ = 0O or DNE)
. Intervals of increase/decrease

. Possible point(s) of inflection (where f" = 0or DNE)
. Intervals of concavity

. Sketch

—= O WD 00 = O M e L P =

Since we are no longer dealing with only polynomials and rational functions, we may need to use I'Hospital's rule to aid
in computing limits.
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Examples

Example 1
Sketch the graph of the function y = ze™™.
Solution
Let f(z) = ze T. Hy
1. The function f(z) is a product of a polynomial and an
exponential which both have domain IR, and so the domain of
flz)is R
(Os D) T
2. The y-intercept of f(z) is f(0) = 0e® = 0. i AN | T 1 T 4
3. Since & and e~ are both continuous functions, so is f(xz).
Therefore, f(z) has no discontinuities.
4. Since e™% # 0, we have f(z) = ze™® = 0if and only if
-1
z = 0, the z-intercept of f(z)isz = 0.
-2
Examples
Example 1
Sketch the graph of the function y = ze™™.
Solution
5-6. We need to examine the behaviour of the function f(z) as z Hy
approaches +-0o:
T
Consider lim ze ™* = lim —.
T—00 r—oo T
: S : =
Since this is an indeterminate form of type -, we can use (0,0) .
I'Hospital's rule to evaluate the limit: i T | T T ) ?

lim ze * = lim
IT—00

i
r—oo T

© CEMC and University of Waterloo Page 2 of 17



Examples
Example 1
Sketch the graph of the function y = ze™™.
Solution
Now consider lim ze™ . Hy
I——00
We can see from a sketch of y = e * that, as ¢ — —o0,
e % — oo and so we have
. _r _
m ze = oo (0,0) ~0
Since f(x) = ze™* > 0forx > 0, the function approaches the 1 | ? i 1 1
horizontal asymptote y = 0 from above.
Here, we have no oblique asymptote as the function decreases
exponentially as € — —oo.
-1
4
—00
-2
Examples
Example 1
Sketch the graph of the function y = ze™™.
Solution
7. Next we determine the critical points of f(z). i Ty !
Using the product rule, we get Local . !
fllz)=z(—e?)+e*(1)=e*—ze 2= (1—z)e* g -
Since f'(z) is defined for all real numbers x, critical points only ?(1, c)
occurwhen f'(z) = 0. ! _)Oa:
Ase* £ 0, wehave f'(z) =0ifandonlyifz = 1. - 1 ! 1 3 4 3
8. Now we can determine the intervals of increase and decrease !
using the following table: Increasing ] Decreasing
]
Interval r<l1 r>1 1 !
]
fl@)=1-=z)e® (H)(H) >0 (-)(+) <0 A '
f(z) Increasing Decreasing E
] i
Therefore, £ = 1is a local maximum, and the maximum value is !
fA)=1et=1=~037
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Examples
Example 1
Sketch the graph of the function y = ze™™.
Solution
9. Finally, we find all points at which f(z) may change concavity. 1y !
A concavity change may occur where f"(z) = 0 or where - {
" ' Local maximum
f"(x) does not exist. [
é(1
We have f'(z) = (1 — z)e * = e — ze * and s0, Using .( B =0
the product rule, we have v T I T v v z,
== -1 L} 2 3 4 5
fl(z) = —e*—|z(—e%)+ e_z] '
]
T
=2 t+ze” Increasing ! Decreasing
— (e " :
i~ []
Therefore, f”(z) = 0if and only if T = 2. Note that " () is '
defined for all . —o'/o :
The function value at this point is f(2) = 22 =~ 0.27. :
] i
Examples
Example 1
Sketch the graph of the function y = ze™™.
Solution
10. We can now determine the intervals on which the function is Hy
concave up and cancave down. Local - - - -
Since the domain of f”(z) is all of R, the concavity of f(z) can T ?)mt of inflection
only change at the point of inflection = = 2.
Interval <2 x> 2 in B H T 1 T T
f'lz)=(z—2)e* (=)(+)<0 (+)(+)=0 —
Concave
f(z) down Concave up N
Therefore, f(z) has a point of inflection at (2, 2e72).
11. Using all of the information that we have gathered, we make
the following sketch.
-2

© CEMC and University of Waterloo Page 4 of 17



Examples
Example 2
_ cos ()
Sketch the graph of the functiony = ———————.
1+ sin(z)
Solution
cos () 104
Let flz) = ——————. ¥
f(=) 1+ sin(z)
Since cos (z) and 1 + sin (x) have period 27, so does f(z).
We will sketch the curve y = f(z) over the interval [0, 2m]. s
1. The functions cos (z) and 1 + sin () are both continuous, and so
the domain of f(x) is all real numbers z such that 1 + sin (z) # 0.
3w T
We have sin (z) = —1 when z = — + 2k, for any integer k, and FARARARRARRASRAF RN RA" AERN 4
4 2 4 4 2 4
so the domain of f(zx) is
{:BE]R:::;& %+2k1‘r,ki5 any integer } ]
3T
On the interval [0, 2], f(z) is only undefined at the point £ = 5
“104
Examples
Example 2
_ cos (x)
Sketch the graph of the functiony = ——————.
1+ sin(z)
Solution
2. The y-intercept of f(z)is 109y
cos (0) 1
f(0) = - - =
1+sin(0) 1+0
Since f(z) has period 2m, we also have f(27) = 1. s
3. The function f(z) has a discontinuity at each point where
. _ 3w _ (0,1) (2m, 1
sin (z) = —1, thatis at £ = — + 2k for any integer k. ®
) ) ) o ) 3w E ke sk 3k A 2
There is one point of discontinuity in the interval ['I], 21r] atr = ? T 7T T 3 7T T
Let's examine the behaviour of the function as it approaches this
discontinuity from the left and from the right. -
104
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Examples

Example 2

) cos ()
Sketch the graph of the functiony = —————.
1+ sin (z)

Solution

= +

Using L'Hospital's rule we have

—sin (z)
z,3 cos (z)

provided that the second limit exists or approaches +oco.

37~ —sin(z) N —(-1)
Asm—)? " cos(z) O

— —o0 and so

3w . [ 3w -
As cos > =0and1 + sin <> =1+ (—1) = 0, the limits

™ ™
as T — > and x — o are indeterminate forms of type g

=¥ Then@) ¥ 4 (1, )

cos (z)

m —— 7
3 1 + sin(z)

L]

“(l], 1) (2m, B’

aafn -
IR

-5

-10 4

Examples

Example 2
cos (z)

Sketch the graph of the function y = 1_'_7()
sin (=

Solution

Similarly, using I'Hospital's rule, we have

cos(z) . —sin(z)

G
o THsimn(@) .oz cos(a)

nt —sin(z) —(-1)
and, asx — — , we have =4
2 cos () 0t

hence the limit is +o00.

. 3w
Therefore, f(z) has a vertical asymptote at z = -5

— 400 and

—5 =

a4
IER
|
“|
+|

-10 i
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Examples

Example 2
cos ()

Sketch the graph of the function y = 1+7()
sin (z

Solution

4. The roots of f(x) occur when the numerator of f(z) is 0, but the 104y

E

denominator is non-zero.
™
QOver the interval [0, 2], we have cos (z) = Owhen z = 3

3 7
andz = —.

Since (0:1)
3 3 <
m(g) :—12}14—3'1:1(%) —0
™ m
sin[ = | =0=1+sin( =) #0
2 2 54

™
only & = 3 is a root of f(x).

.
—
(e
=
—

-
“|
..q.l}...___________
“f

wla o
NER J
w
A
=
wn
=

-10 4

T
So inthe interval [0, 2], we have one z-intercept at = 3 —oo]

5-8. As f(z) is periodic, the limit of f(z) as = approaches positive or negative infinity does not exist.

Examples

Example 2

_ cos (x)
Sketch the graph of the functiony = ———————.
1+ sin(z)

Solution

7. We now find f'(z) using the quotient rule: 109y

a +si.|1(z))d—i [ cos (2)] — cos (z)d—‘i [1+sin ()|

(1 +sin (z))?

_ (1 +sin(z))[—sin(z)] — cos(z)[cos (z)] '

f'z) =

(1+sin(z))* (0,1) (
—sin (z) —sin® (z) — cos? (z)

(- an @) R

[X1E]
=
—

[

_ —sin(3) — (sin’ (z) + cos’ (z))
(1+sin(2))*

B —sin(z) —1

 (1+sin(@)?
_—(+sin@) _ 1 ol —°°l:

(1 +sin(z))’ 1+ sin (z)
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Examples

Example 2
_ cos ()
Sketch the graph of the functiony = ———————.
1+ sin(z)
Solution
o ; 105
1+ sin (z)

f'z) =

Always decreasing 1100
The derivative f'(z) is undefined when sin (z) = —1.

. . 3
Over the interval [0, 27], this occurs at z = -

3r
Atthough f'(z) is not defined at x = = there is no critical point here (0,1) (%,0)
27

) 3w o i
since & = > does not lie in the domain of f.

a4

NER J
w
E)
=
wn
=
[
=
-
=
%
=

In particular, the function f(z) has no local extremes.

8. Since sin (z) > —1 we have 1 + sin (z) > 0for allz and, in 5 4
particular, 1 4+ sin (x) > 0 for all z in the domain of f(z).

Therefore, we have f'(z) = — < 0 for all ¢ in the

1+ sin (z)
domain of f(z) and so the function f(z) is always decreasing.

-1 o 1

Examples

Example 2
cos (z)

Sketch the graph of the function y = 1+7()
sin (z

Solution

9. Finally, we find all points at which f(z) may change concavity. A 104y

1
concavity change may occur where £ (z) = 0 or where f" () does Always decreasmg:T

not exist. Since f'(z) = — 1+sii =i —(1+sin(z)) "

we will use the power rule and the chain rule to find f" (z): e

7(2) = +(1 +sin (&) ? = [1+sin(2)] 0.1)

cos (z) ¢

(14 (@)
We have f"(x) = 0 when cos(z) = 0and 1 + sin(z) # 0. This

™
occurs when ¢ = 5 We have f" undefined when 1 + sin(z) = 0.

a4

NER J
w
E)
=
wn
=
[
*
-
=
5
=

-5

3T
This occurs when z = ? . These are the only two & values at which

f(z) may change concavity. -10g !

Notice that the only possible point of inflection, (T—; ,l]), has already been plotted on our graph.
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Examples
Example 2
_ cos ()
Sketch the graph of the functiony = ———————.
1+ sin(z)
Solution
10. We can now determine the intervals on which the function is 10 Ty 1 RREE PO
concave up and concave down. c :Al(\j\'ays decrleasmg i | Concave
Again, we will restrict ourselves to the interval [l], 21r]_ oneave up i cneaye down up
1 1
T 3x I i1 1 :
Interval 0<z<§ 3 <zT< g ?<z<21r ! {
F(z) = _cos(z) () > i) <0 1G] =0 | Point of inflection |
(1+sin(z))® (1) (+) (+) ~— '
f(z) Concave up Concave down Concave up 2in
. . . ™
Observe that f(z) has a point of inflection at = = 3
11. Using all of the information that we have gathered, we make the -
following sketch.
‘104
Examples
Example 2
_ cos (x)
Sketch the graph of the functiony = ——————.
1+ sin(z)
Solution
]
]
:
Point of in ion Point of infl
; < T
-in : i 4n
]
:
] 1 v = cot(z)
This graph will repeat with period 27 and so we get the above graph of f(z).
cos (&
Note the similarities and differences between this graph and the graph of cot (z) = — (( )) .
sin (z
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Examples

Example 3
ez
Sketch the graph of the curve y = —.
T
Solution
e:
Let f(z) = —.
T

1. The function f(z) is a quotient of an exponential and a polynomial both having domain .
The function f(z) is undefined only when the denominator is 0 and so the domain of f(x) is all real numbers except
z =0

2. Since f(0) is undefined, f(x) has no y-intercept.
That is, f(z) does not cross the y-axis.

Examples
Example 3

ez
Sketch the graph of the curve y = —.
T

Solution
3. Since e and z are both continuous functions, f(z) is continuous at 0Ty
every point in its domain. Too
There is only 1 discontinuity, occurring at z = 0.
Let's examine the behaviour of f(z) as = approaches 0 from the left ]
and from the right.
e’ 1 r=0
Asz—}l]+,_f(z)=—M—+—>+oo T
x 0 a2 o2 3 4
sz =0, flr) = &~ =
s T) = — = — — —00.
. = =0
Therefore, f(x) has a vertical asymptote at z = 0. -5+
4. We have f(x) # 0for all z in the domain of f(x) and so f(z) has
no x-intercept. TRl
=104
v
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Examples
Example 3
ez
Sketch the graph of the curve y = —.
T
Solution
5-6. We need to examine the behaviour of the function as & approaches 0Ty
+o0: oo
o0
]jm i (2) ] /-‘
T—00 I o0
a (ez =10
= dz by I'Hospital's rule z,
00 -4 -3 2 1 1 2 3 4
— |z 0
dz
f— ez s
== T 7
— 00
—o0)
e’ ot
Asz — —o0, — = —— =0 -y
T —00
Since f(x) < 0for z < 0, the function approaches the horizontal asymptote y = 0 from below.
Here, we have no oblique asymptote as the function increases exponentially as & — oo.
Examples
Example 3
ez
Sketch the graph of the curve y = —.
T
Solution
7. Next, we determine the critical points of f(z) to locate the extreme 0Ty
values. oo
Using the quotient rule, we get /.,,°°
T T T 1
oy wet—e®  e(z—1)
-f (Z) - 22 - 32
Since € and 2 are positive for all z # 0, we have f'(x) = 0 if and z=0 T
onlyifz = 1. 43 a2 T T
0=
Therefore, f(x) has a local extreme atz = 1.
since f(z) (and f'(z)) is undefined at £ = 0, we also have a critical N
pointatz = 0.
—o0)
=10 3
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Examples
Example 3

ez
Sketch the graph of the curve y = —.
T

Solution
8. Let's examine the sign of the derivative on the intervals = < 0, Ty :
0 < z < 1andz > 1, determined by the critical points of f(z). Decreasing 1oo:Increa31ng
i o0
Intenval z<0 D<z<1 r>1 Decreasang g
54
ez—1)  (+)(— +)(— +)(+ '
F(z) = - WO _, OO _, OO0, JLe)
2 W &) @ I Y
flz) Decreasing Decreasing Increasing | | | | Local m.illimlllm i
-4 -3 2 -1 ] 2 3 4
Therefore, there is a local minimum at 2 = 1 with value 0« |
1 1
e
f(1)= T:emz?_ o E
|
—oo)f |
-y :

Examples

Example 3

ez
Sketch the graph of the curve y = —.
T

Solution

9. Finally, we find all points at which f(z) may change concavity. A concavity change may occur where f”(z) = 0 or
where f"(z) does not exist.

ez —1 ze® — e*
Since f'(z) = (22 ) = e find f (z) using the quotient rule as follows:

22% a:ez—e"] —{ze"—e‘)%[ﬂ]

(=)=

(z2)*

z2 [ze” +e* — e’] — (ze® — e*)(2z)

P
N e — 222%e% 4+ 2ze”
i
B e*(z? — 2z +2)

3
Since € and * are both non-zero for all z in the domain of f(z), we have f"(z) = 0onlyifz® — 2z 4+ 2 = 0.
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Examples

Example 3

ez
Sketch the graph of the curve y = —.
T

Solution
22 —224+2=0

Using the quadratic formula, we solve this equation and find

2+1/(-2"-41)(2) 9477
Tr = o

2(1) 2

and so this quadratic has no real roots. Therefore, we have f"(z) # 0 for all z in the domain of f(z).

10. We can now determine the intervals on which the function is concave up and concave down.
Since f(z) has no points of inflection, the only place where the concavity of f(z) can change is at the discontinuity
z = 0. Examining the sign of f”(z) on the intervals & < 0 and = > 0 gives

Interval z<0 P
fria=CE 2D ren=47 <o 1 =Ty >0
f(z) Concave down Concave up

Examples
Example 3

ez
Sketch the graph of the curve y = —.
T

Solution
Interval z<0 z>0 "
f(z) Concave down = Concave up

11. Using all of the information that we have gathered, we make the
N (lLe)
Local minimum 7
a3 2 = ooz 3 4

following sketch.
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Examples

Challenge Question
In(z)+=z

Sketch the graph of the curve y = p

Solution
In(z)+=z 19y

Let = —

et flz) =~

1. Since the domain of In () is z > 0, the domain of In (z) + zis

z > 0. 2

Since the domain of €” is R and €® # 0, the domain of f(z) is also H I

z >0

ey
.
g

2. Since f(0) is not defined, the function f(x) has no y-intercept.

3. Since In (z), = and €” are continuous for all z > 0 and € # 0, the -1
function f(z) is continuous at every point in its domain.

We need to examine the behaviour of f(z) as = approaches the endpoint
« = 0 from the right. |—oo
Asz — 0% wehaveln (z) + z — —ooand € — 1and so
In(z)+x
r)=—"—"—

fla) = =2
Therefore, f(x) has a vertical asymptote at z = 0.

— —ooasz —+ 07

Examples

Challenge Question
In(z)+=z

Sketch the graph of the curve y = pr-

Solution

In 1
4. Since & > 0for all z, we have f(z) = % = O exactly Y

whenln (z) + 2 = 0.

How many roots does this equation have and how do we locate the roots?
Note that the roots of this equation are the points x that satisfy o T T v
In(z) =—=z

From a sketch of the two functions in question, we conclude that there is

exactly 1 root, and that the root lies in the interval [0, 1].

We will use Newton's method to approximate the root to 2 decimal places, 11
which should be sufficient for our sketch of f(z).
Using g(z) = In(z) + = and &1 = 1, try Newton's method now.

Newton's method with g(z) = In (z) + =, ¢'(z) = % +landz; =1 |—oo
produces the sequence
z; =1, 29 = 0.500, z3 =~ 0.564, z, ~2 0.567, =5 ~ 0.567,...
We conclude that the root of In (z) + = = 0, and hence the root of f(z) = 0, occurs at « =~ 0.57.
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Examples

Challenge Question
In(z) +=z

Sketch the graph of the curve y = p

Solution

5-6. Next, we need to determine the behaviour of f(z) as x approaches

L~

00.
Since f(a) is only defined for > 0, we do not need to consider the limit

as x approaches —oo. (0.57,0) -0z
- )
We have bl 3 3

i (@) +2 (

T—+00 et

e
.

818
S—

1
+ +1
0 et
=0
using I'Hospital's rule.

Il
—
s
—

Sinceln (z) + z > Oforallz > 1 and e® > 0 for all z, we have
f(z) = 0forallz = 1.
Therefore, the function approaches the horizontal asymptote y = 0 from above.

Examples

Challenge Question
In(z) +=z

Sketch the graph of the curve y = p

Solution
7. Let's find the critical points of f(z). Ty

Using the quotient rule, we find the derivative of f(z):

er(%+1)—(].n(2:}+z)e’
f@) = = 0500 =0q

e”(% —In(z) —3—1—1)
(e)?
_%—ln(z)—z—t—l -
e

1
We have f'(z) = 0 exactywhen = —In(z) —z+1=0or,
z

equivalently, when ey

1 1—z?
]n(z):__z+1:‘"‘7ﬂ
i
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Examples

Challenge Question

In(z)+=z
Sketch the graph of the curve y = B
Solution

1—-z?+z 21

In(z) = ———
() = —
11—z 4z
Sketching the function In (z) and the rational function 7—'—, we N
T

see that the two functions intersect at exactly 1 point, and hence there is 1
real root of the equation f'(z) = 0.

The root is in the interval [1, 2], and we use Newton's method with
1

g(z) = — —In(z) — = + 1tofind the root correct to 2 decimal
T

places: ¢ =~ 1.39.

Try this on your own!

Therefore, the root of f'(z) = 0is =2 1.39.
Since f'(z) is defined for all z > 0, the only critical point of f(z) is 5
x =2 1.39, which is a local extreme.

Examples

Challenge Question

In(z)+=z
Sketch the graph of the curve y = =
Solution
8. Next we will examine the sign of the derivative on the intervals "y ,
0 1.39 and 1.39. ' maxi
<z < andx > (1.39'0.43)/[.01331 mum
Interval 0<z<1.39 x > 1.39
3 i 14
f(z) Increasing Decreasing

Therefore, the point & =~ 1.39 is a local maximum, and the maximum -1

°
f'(z) fiy>o0  f2)<o — :
value is f(1.39) =2 0.43. E

L .
Increasing Decreasing
]

]
l—oo
oy .
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Examples

Challenge Question

In(z) +=z
Sketch the graph of the curve y = =
Solution
9. Finally, we find all points at which f(z) may change concavity. Ty ,
I _I(z)-z+1 ' Local maxi
Since f'(z) = # using the quotient rule, we have (1.39,0.43) , € e
e’ °
e’(—é—%—l)—(%—]ﬂ{z]—z+1)ez L : -0z
f'(z) = RN H ] T
(e2)? :
'
é(—%—;—1—%+h{m)+z—1) !
B @) E
—L 2 i) +z—2 :
z* z :
- & Increasing Decreasing
]
The function f” (z) is defined for allz > 0 and f"(z) = 0 if and only if |—oo |
Y '

1 2
As in Step 7, we can use a sketch of In (z) and an appropriate rational function to determine that this equation has
exactly 1 real root, and we use Newton's method to approximate the root to 2 decimal places.

Doing so, we find that " (z) = 0 when z ~ 2.26.

Examples

Challenge Question
In(z) +=z
Sketch the graph of the curve y = =

Solution

10. Examining the sign of the second derivative on the intervals Ty

0 <z < 2.26 and z > 2.26, we get the following: Local maximum
< Point of inflection

Interval 0 <z <226 z>2.26 /’_\“/\
€T

(=) <o f'(3)>0 i i H 7 ?

f(z) Concave down  Concave up In(z)+x

11. Using all of the information that we have gathered, we make the -1
following sketch.
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