Limits at Infinity

Evaluating Limits of Convergent Sequences

A **sequence** is a function whose domain is the set of positive integers $n=1,2,3,\ldots$

The values or individual terms of a sequence are generally denoted by a subscript of n on t. In other words, we use t_n rather than f(n).

For example, the list of all positive odd numbers forms the sequence $1, 3, 5, 7, \ldots$

This sequence could be represented algebraically by two different formulas:

1. Recursive Formula

2. Arithmetic Formula

$$t_n = t_{n-1} + 2$$
 where $t_1 = 1$.

$$t_n=1+2(n-1)$$

$$=2n-1$$
 for $n=1,2,3,\dots$

If we continue this sequence of numbers, would this sequence approach a single value?

In other words, as $n \to +\infty$ does t_n approach a limit?

As n increases, we see that t_n becomes arbitrarily large in value.

Therefore, as $n \to +\infty$, $t_n \to +\infty$.

We could use limits to write this as

$$\lim_{n o +\infty} (2n-1) o +\infty$$

Examples

Example 1

Consider the sequence defined by $t_n=rac{1}{n^2+4}$.

- a. List the first five terms of this sequence.
- **b.** Evaluate $t_{10},\,t_{100},\,$ and $t_{1000}.$ Express your answers as fractions and as decimals
- **c.** Using your answers from part **b.**, predict the value of $\lim_{n \to \infty} \frac{1}{n^2 + 4}$

Solution

a. The first five terms of the sequence are

t_1	t_2	t_3	t_4	t_5	
$\frac{1}{1^2+4}$	$\frac{1}{2^2+4}$	$\frac{1}{3^2+4}$	$\frac{1}{4^2+4}$	$\frac{1}{5^2+4}$	
$\frac{1}{5}$	$\frac{1}{8}$	$\frac{1}{13}$	$\frac{1}{20}$	$\frac{1}{29}$	

Example 1

Consider the sequence defined by $t_n=rac{1}{n^2+4}$

- a. List the first five terms of this sequence.
- **b.** Evaluate $t_{10},\,t_{100},\,$ and $t_{1000}.$ Express your answers as fractions and as decimals
- **c.** Using your answers from part **b.**, predict the value of $\lim_{n \to \infty} \frac{1}{n^2 + 4}$

b.
$$t_{10} = \frac{1}{10^2 + 4} = \frac{1}{104} \approx 0.0096$$

$$t_{100} = \frac{1}{100^2 + 4} = \frac{1}{10004} \approx 0.00009996$$

$$t_{100} = rac{1}{100^2 + 4} = rac{1}{10004} pprox 0.00009996$$
 $t_{1000} = rac{1}{1000^2 + 4} = rac{1}{1000004} pprox 0.000000999996$

Examples

Example 1

Consider the sequence defined by $t_n=rac{1}{n^2+4}$

- a. List the first five terms of this sequence.
- **b.** Evaluate $t_{10},\,t_{100},\,$ and $t_{1000}.$ Express your answers as fractions and as decimals.
- **c.** Using your answers from part **b.**, predict the value of $\lim_{n \to \infty} \frac{1}{n^2 + 4}$

Solution

c. In this example, we see that as $n o \infty$, t_n appears to approach the single value 0.

We can justify saying that $\lim_{n\to\infty}\frac{1}{n^2+4}=0$ by noting that we can make $\frac{1}{n^2+4}$ as near as we like to 0 by making n sufficiently large.

Sequences that approach a single finite value are called convergent.

Example 2

Consider the sequence defined by $t_n = \frac{n-3}{n}$

- a. List the first five terms of this sequence.
- **b.** Evaluate t_{10} , t_{100} and t_{1000} . Express your answers as fractions and as decimals.
- **c.** Using your answers from part **b.**, predict the value of $\lim_{n \to \infty} \frac{n-3}{n}$

a. The first five terms of the sequence are

t_1	t_2	t_3	t_4	t_5	
$\frac{1-3}{1}$	$rac{2-3}{2}$	$\frac{3-3}{3}$	$rac{4-3}{4}$	$\frac{5-3}{5}$	
-2	$-\frac{1}{2}$	0	$\frac{1}{4}$	$\frac{2}{5}$	

Examples

Example 2

Consider the sequence defined by $t_n = rac{n-3}{n}$.

- a. List the first five terms of this sequence.
- **b.** Evaluate t_{10} , t_{100} and t_{1000} . Express your answers as fractions and as decimals.
- **c.** Using your answers from part **b.**, predict the value of $\lim_{n \to \infty} \frac{n-3}{n}$

Solution

b.
$$t_{10} = \frac{10-3}{10} = \frac{7}{10} = 0.7$$

$$t_{100} = \frac{100 - 3}{100} = \frac{97}{100} = 0.97$$

b.
$$t_{10} = \frac{10 - 3}{10} = \frac{7}{10} = 0.7$$

$$t_{100} = \frac{100 - 3}{100} = \frac{97}{100} = 0.97$$

$$t_{1000} = \frac{1000 - 3}{1000} = \frac{997}{1000} = 0.997$$

Example 2

Consider the sequence defined by $t_n=rac{n-3}{n}$.

- a. List the first five terms of this sequence.
- **b.** Evaluate $t_{10},\,t_{100}$ and $t_{1000}.$ Express your answers as fractions and as decimals.
- **c.** Using your answers from part **b.**, predict the value of $\lim_{n \to \infty} \frac{n-3}{n}$

Solution

c. Thus,
$$\lim_{n \to \infty} \frac{n-3}{n}$$
 appears to be 1.

To understand why this occurs, note that $\frac{n-3}{n}=1-\frac{3}{n}$, and since $\lim_{n\to\infty}\frac{3}{n}=0$, the sequence t_n has limit 1.

Examples

Example 3

Consider the sequence defined by $t_n = \left(rac{1-n}{n}
ight)^n$.

- a. List the first five terms of this sequence.
- b. Graph these values.
- **c.** Using your answers from part **b.**, predict the value of $\lim_{n \to \infty} \left(\frac{1-n}{n} \right)^n$.

Solution

a. The first five terms of the sequence are

t_1	t_2	t_3	$t_{\scriptscriptstyle A}$	t_5	
$\left(\frac{1-1}{1}\right)^1$	$\left(\frac{1-2}{2}\right)^2$	$\left(\frac{1-3}{3}\right)^3$	$\left(\frac{1-4}{4}\right)^4$	$\left(\frac{1-5}{5}\right)^5$	
0	$\frac{1}{4}$	$-\frac{8}{27}$	$\frac{81}{256}$	$-\frac{1024}{3125}$	

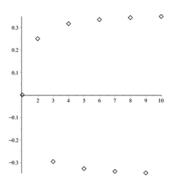
Example 3

Consider the sequence defined by $t_n = \left(rac{1-n}{n}
ight)^n$.

- a. List the first five terms of this sequence.
- b. Graph these values.
- **c.** Using your answers from part **b.**, predict the value of $\lim_{n \to \infty} \left(\frac{1-n}{n} \right)^n$.

Solution

h



Examples

Example 3

Consider the sequence defined by $t_n = \left(\frac{1-n}{n} \right)^n$.

- a. List the first five terms of this sequence.
- b. Graph these values.
- **c.** Using your answers from part **b.**, predict the value of $\lim_{n \to \infty} \left(\frac{1-n}{n} \right)^n$.

Solution

c. As we see from the graph, the values of this sequence alternate between positive values and negative values. This sequence is not approaching a single finite value as $n \to \infty$.

Since a single value is not approached, we say that the limit does not exist and that the sequence is divergent.

$$\lim_{n\to\infty}\left(\frac{1-n}{n}\right)^n \text{does not exist.}$$

Connecting Limits at Infinity with Horizontal Asymptotes

Horizontal asymptotes affect the end behaviour of a graph.

The end behaviour can be studied by considering very large positive and negative values of x and their corresponding value of f(x).

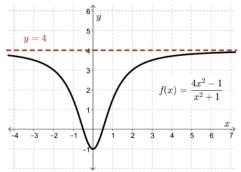
As we consider larger and larger positive values of x, we say that $x \to +\infty$.

As we consider larger and larger negative values of x, we say that $x \to -\infty$.

Examples

Example 4

Let's consider the graph of the function $f(x)=rac{4x^2-1}{x^2+1}$



We see that as $x \to +\infty$, and as $x \to -\infty$, $f(x) \to 4$.

How can we use the algebraic representation of the function to determine this horizontal asymptote?

Example 4

Let's consider the graph of the function $f(x)=rac{4x^2-1}{x^2+1}$

How can we use the algebraic representation of the function to determine this horizontal asymptote?

Solution

Consider $\lim_{x\to\infty}\frac{1}{x^n}$ for any positive number n. As $x\to\infty,\,\frac{1}{x^n}\to0.$

As
$$x \to \infty$$
, $\frac{1}{x^n} \to 0$

This is a very special limit, which we will use to determine horizontal asymptotes.

To find the horizontal asymptote of $f(x)=rac{4x^2-1}{x^2+1}$, begin by identifying the highest power of x within this function and divide each term by this power.

$$\lim_{x \to \infty} \frac{4x^2 - 1}{x^2 + 1} = \lim_{x \to \infty} \left(\frac{4x^2 - 1}{x^2 + 1}\right) \, \left(\frac{\frac{1}{x^2}}{\frac{1}{x^2}}\right) = \lim_{x \to \infty} \, \frac{\frac{4x^2}{x^2} - \frac{1}{x^2}}{\frac{x^2}{x^2} + \frac{1}{x^2}}$$

Now, simplify each term.

$$\lim_{x o\infty}rac{4-rac{1}{x^2}}{1+rac{1}{x^2}}\,(ext{for }x
eq0)$$

Examples

Example 4

Let's consider the graph of the function $f(x) = \frac{4x^2 - 1}{x^2 + 1}$

How can we use the algebraic representation of the function to determine this horizontal asymptote?

Solution

Identify the terms where $\lim_{x o \infty} rac{1}{x^n} = 0.$

Substitute 0 for each of these terms and evaluate the limit.

$$\lim_{x \to \infty} \frac{4 - \frac{1}{x^2}}{1 + \frac{1}{x^2}} = \frac{4 - 0}{1 + 0} = 4$$

Note that since $f(x)=rac{4x^2-1}{x^2+1}$ is an even function, the limit is the same whether $x o +\infty$ or $x o -\infty$, so y = 4 is a horizontal asymptote in both cases

Example 5

Consider the graph of the function $f(x)=2^{-x}+rac{x-1}{x+2}.$ A portion of its graph is shown.

We note the following properties of the function f(x) (that are suggested by the given graph and can be verified algebraically):

As
$$x o \infty$$
, $f(x) o 1$.

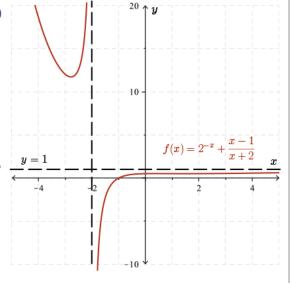
It follows that the line y=1 is a horizontal asymptote of the graph y=f(x).

As
$$x \to -\infty$$
, $f(x) \to \infty$.

Therefore, f(x) does not have a horizontal asymptote in the other direction.

We see that a horizonal asymptote does not need to occur in both directions.

f(x) does not necessarily approach a horizontal asympotote as $x \to +\infty$ and as $x \to -\infty$.



Examples

Challenge Problem

Try this on your own and then click play to see the solution.

A rational function has a horizontal asymptote at $y=\frac{1}{2}$ and the degree of its numerator and denominator is greater than or equal to 1. Determine a possible equation for this function.

Solution

In order for a rational function to have a non-zero horizontal asymptote, the degree of the numerator must be equal to the degree of the denominator.

Then, the rational function will have a horizontal asymptote at $y=\frac{a}{b}$, where a and b are the coefficients of the highest degree term in the numerator and denominator, respectively.

For the function to have a horizontal asymptote at $y=\frac{1}{2}$, the ratio of the leading coefficient of the numerator to the leading coefficient of the denominator must be $\frac{1}{2}$.

One such function that satisfies these conditions is $y=rac{x+1}{2x}$.