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Equations Of Lines In R3

Introduction

Vector Equation

Parametric Equations

Scalar Equation

Three ways of describing a line in R? have been discussed so far:

F=7y+td,tcR

r =T+ ta,
y=1y,+thtc R

Az +By+C =0

There is a natural extension of the vector and parametric equation descriptions to lines in B3

However, the scalar equation does not generalize as it is defined by the normal vector to a line.
Since there are infinitely many normals to a given line in 3 dimensions, there is no valid definition.

Vector Equation of a Line in R3

Similar to the case in 2 dimensions, the vector equation of
a line in B? can be described using a point on the line
and a direction vector for the line.

Let By (zo, Yy, 20) be a specific point on the line.
Let P (z,, z) be an arbitrary point on the line.

Using the triangle law of vector addition,
— — Y
OP =0F, + F

(z,y,z) = (Iﬂ,yﬂ)z‘]) +ﬁi’
orr=ro+td, teR

where d = (a, b, c) is a direction vector for the line.

This is the vector equation of a line in R3.

l

N

Py (T, U, 20)

P (z,y,z)

d = (a,b,¢)
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Parametric Equations of a Line in R3

Considering the individual components of the vector equation of a line in 3-space gives the parametric equations
r=xy+ia
y=1yy +tb
z=z +1tc

where t € R and d = (a, b, c) is a direction vector of the line.

Using the three parametric equations and rearranging each to solve for ¢, gives the symmetric equations of a line

in B3,
f=m;mu, t:y;yu, t=z_CZﬂ
_.z—azu:ﬂ;‘yu:z:z“,agéo,b#ﬂ,c?éo
Examples
Example 1

a. Find the vector, parametric, and symmetric equations of the line through Fy (3, 7, —2) with direction
vector (1, —3,2).

b. Find two other points on the line.

c.Is (—1,19,8) on the line?

Solution
a. The vector equation of the line is (z,y,2) = (3,7, —2) +#(1,-3,2), t e B

The parametric equations of the line are

r=3+¢

y=T7—-3t

z=-2+2,tcR
The symmetric equations are

z—3 y-—-7 z+42

1 -3 2
b. Using the vector equation of the line, sett = —1 and ¢t = 1 to find two points on the line.
When ¢ = —1, we get (z,¥,2) = (3,7, -2) — (1,—-3,2) = (2,10, —4).
When t = 1, we get (z,%,2) = (3,7,—2) + (1,-3,2) = (4,4,0).
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Examples

Example 1

a. Find the vector, parametric, and symmetric equations of the line through F, (3,7, —2) with direction
vector (1, —3,2).

b. Find two other points on the line.

c.Is (—1,19,8) on the line?

Solution

¢. A method to determine if (—1, 19, 8) is on the line is to solve for £ using one of the parametric equations and
substitute this value for ¢ into the other two equations.
Usingz =3+t weget —1 =3 +tandsot=—4
Substituting £ = —4 into the equation for y gives y = 7 — 3(—4) = 19, which is consistent with the point.
Substituting + = —4 into the equation for z gives z = —2 + 2(—4) = —10, which is not consistent with the
point (z = 8).
Therefore, the point (—1, 19, 8) is not on the line.
An alternative method is to substitute the coordinates of the point into the symmetric equations and verify that the
equations are consistent. Substituting gives

z—3=—1—3=_4 y;?=ﬂ=_4 z+2=w=

1 1 -3 -3 2 2

which is inconsistent (since —4 # 5), so the point (—1,19, 8) is not on the line.

5

Examples

Example 2
Find the parametric and symmetric equations of the line passing through P (2, —5,3) and @ (—4, —5,7).

Solution

- —
Using the two points we may find a direction vector for the line; d = PQ = (—6,0, 4).
This gives the parametric equations

r=2—6t

y=—-5

z=3+4,teR
The symmetric equation is

z—2 =z-3
—6 — 4 ? y

Since y is independent of the value of ¢, we write y = —5 as part of the symmetric equation.

This happens when we have a component of the direction vector equal to 0.

Further, if two of the components of a direction vector are equal to 0, then there are no symmetric equations for the
line.
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Examples

Example 3

Lines L; and L, are two lines in R® defined as
— = —
Ly=0P, +td,teR, Ly=0P+sdy, s
— = —
Prove that the lines are coincident if and only if OP; — OP; and d,; are scalar multiples of d,.

Solution

First, we must discuss the phrase if and only if.
When asked to prove an A if and only if B" statement, we are required to prove that A implies B (if A is true, then
Bis true), but also that B implies A (if Bis true, then A is true).
In the example given, this means that we are required to prove the following two parts:
. ) o ) — — — _ —
Part 1: Prove that if the lines are coincident (if Ly = L), then OP; — OP, and d; are scalar multiples of ds,

and the converse statement,

e — ) — ) o
Part 2: Prove that if OP; — OP, and d; are scalar multiples of ds, then the lines are coincident.

Examples
Example 3

— — — —
Part 1: Prove that if the lines are coincident (if Ly = L), then OP; — OP, and d; are scalar multiples of ds.

Solution
Proof of Part 1

) _ o _ B —» ) e
Prove that if the lines are coincident (if Ly = Ls), then OP; — OPF; and dy are scalar multiples of da.
Part 1 has two statements to prove.
These are

P . B B . ;l - - _}

i if the lines are coincident (if Ly = La), then OP; — OP, is a scalar multiple of ds: and
— S

i if the lines are coincident (if Ly = L), then dy is a scalar multiple of da.

Proof of Part 1 (i)
Assume that Ly = Lo.

— — ) —
We must prove that OP) — OP, is a scalar multiple of da.

— — e o
Since OF, € Iy (Ll = 0P, +td1) and Ly = Ly, then OP; € Ly (Lz = 0P, +sd2)_

— ==
Therefore, OP; = OP; + sd, for some s (by the definition of Ly).

—_— =3 = ——3 ——3 —
Then OP, — OP, = 8dy, so OP; — OB, is a scalar multiple of ds.
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Examples
Example 3

— — — —
Part 1: Prove that if the lines are coincident (if Ly = L), then OP; — OP; and d; are scalar multiples of dy.

Solution

These are

i if the lines are coincident (if Ly = L), then OP; — OP, is a scalar multiple of dy: and
— —
i if the lines are coincident (if Ly = L), then dy is a scalar multiple of da.
Proof of Part 1 {ii)
— B
Assume that Ly = Lo. We must prove that d, is a scalar multiple of da.
— = — = — =
We have that OPy +dy € Ly (lett = 1in Ly = OP, + td; ) and since Ly = Lo, then OPF; + dy € La.
—_— T —= 7 —
Hence, we get OP; + dy = OP, + sd, for some s (since Ly = OP, + sdy).
—— I e T S 5
Since OF, € Ly and Ly = Ly, then OP; € Ly and so OP; = OP, + qds for some g.
— = —— = — = = — - =
Subtracting these two equations, OP; + dy = OPs + ads and OPy = O, + qds, we get dy = 8da — qda or
— —
dy = (3 — q)da for some scalar s —q.

— ) —
Hence, dy is a scalar multiple of ds .

e — —
Therefore, if the lines are coincident, then OP; — OP, and d; are scalar multiples of dy.

Examples
Example 3
e — —
Part 2: Prove that if OP; — OP, and d; are scalar multiples of ds, then the lines are coincident.

Solution
Proof of Part 2

B — ) o ) o
Prove that if OP; — OP; and d; are scalar multiples of da, then the lines are coincident.

—_— —_—
The line L, is defined by vectors OP, and OP; + d; .

— —_—
If we can show that Ls is also defined by these same two vectors, OP; and OPF; + dy, then Ly = L.
B ) e — = = —— ——
Since OP; — OP; is a scalar multiple of d2, we have OP; — OPs = ¢ds or OP; = OPs + eds for some ¢
e = S —
Since OP; = OP; + ¢d;, then OP; € Ly.

o — ) o — —
Similarly, d, is a scalar multiple of dy and so d; = kd, for some k.
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Examples
Example 3
e e — —
Part 2: Prove that if OP; — OPF; and d; are scalar multiples of ds, then the lines are coincident.

Solution
Proof of Part 2
] ) ) i e e S g
Adding this equation to our previous equation OP; = OPFs + cds , we get
—_— = = =
OP, +d; = OPF; + edy + kd,
; _}
= 0P+ (c+ k)da
— 3
= OP, +1d,, for somel
} _}
Therefore, OF; + d; € Ls.

] — —
Thus, Lg is defined by the same two vectors, OP, and OP, + d;, as Ly and so L; = Ls.

. o . e — ) —
The lines L, and L, are coincident if and only if OP, — OP, and d, are scalar multiples of d,.

Examples

Example 4
Determine if the lines Ly = (—1,0,2) +¢(2, —6,—2), t € Rand Ly = (—22,63,23) + s(—7,21,7), s € Rare
coincident.

Solution

— = — =
From the previous example, we know that the two lines L; = OP; +tdy, t € R and Ly = OP; + 8d;, s € R are
— — — —
coincident if OP; — OP» and d are scalar multiples of da.
In our example, if (—1,0,2) — (—22,63,23) and (2, —6, —2) are scalar multiples of (—7,21,7), then L, and L,
are coincident.

Clearly, (2,—6,—2) = — % (—7,21,7) and so (2, —6, —2) is a scalar multiple of (—7,21, 7).
Since (—1,0,2) — (—22,63,23) = (21, 63, —21) = —3(—7,21,7), then (—1,0,2) — (—22,63,23) is a scalar
multiple of (—7,21, 7).

Therefore, the lines L, and L, are coincident.
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