\[\begin{align*} \lvert {\color{BrickRed}\vec{r}}\rvert^2 &= 50^2+400^2-2(50)(400)\cos(60^\circ) \\ \lvert {\color{BrickRed}\vec{r}} \rvert &\approx 377.5 \text{ km/h}\end{align*}\]
Solving for the direction using the sine law:
\[\begin{align*}\dfrac{\sin(\theta)}{50} &= \dfrac{\sin(60^\circ)}{377.5} \\ \theta &\approx 7^\circ \end{align*}\]
Therefore, the resultant velocity of the plane is approximately \(377.5\) km/h on a course of north \(7^\circ\) west.
The heading is the direction the nose of the plane is pointed. The course or track is the resultant.
We call \(\theta\) the drift angle.