Rewriting the vector equation of a plane into its \(x\), \(y\), and \(z\) components, we get
\[\begin{align*}\vec{r} &= \vec{r_0} + s\vec{a} + t\vec{b},~~s,t \in \mathbb{R} \\(x, y, z) &= (x_0, y_0, z_0) + s(a_1, a_2, a_3) + t(b_1, b_2, b_3),~~s,t \in \mathbb{R}\end{align*}\]
We then see that the parametric equations of a plane are
\[\begin{align*}x &= x_0 + sa_1 + tb_1 \\y &= y_0 + sa_2 + tb_2 \\z &= z_0 + sa_3 + tb_3, ~~s,t \in \mathbb{R}\end{align*}\]