Slide Notes

Glossary

All Slides

Scalar Multiplication

In general, given some real number \(k\), \( k\vec{a} \) is a vector with the following attributes:

  1. Its magnitude is \( \lvert k\vec{a} \rvert = \lvert {k} \rvert \lvert \vec{a} \rvert\).
  2. Its direction is the same as \( \vec{a} \) if \( k \gt 0 \) and opposite to \( \vec{a} \) if \( k \lt 0 \) (if \( k = 0 \), then \( k\vec{a} = \vec{0} \)).

Example 4

In general, given some real number \(k\), \( k\vec{a} \) is a vector with the following attributes:

  1. Its magnitude is \( \lvert k\vec{a} \rvert = \lvert {k} \rvert \lvert \vec{a} \rvert\).
  2. Its direction is the same as \( \vec{a} \) if \( k \gt 0 \) and opposite to \( \vec{a} \) if \( k \lt 0 \) (if \( k = 0 \), then \( k\vec{a} = \vec{0} \)).

Unit Vector Example 5

Conclusion

Paused Finished
Slide /