Help
Toggle navigation
System Homepage
Calculus and Vectors
Algebraic Vectors and Applications
Algebraic Vectors
Watch
Lesson Part 1 (4:50)
Lesson Part 2 (3:47)
Lesson Part 3 (3:51)
Investigation 1
Lesson Part 4 (2:19)
Lesson Part 5 (1:58)
Investigation 2
Lesson Part 6 (5:30)
Alternative Format (Watch and Review sections)
Review
01.
02.
03.
Practise
Exercises
Answers
Solutions
Exercises
For each point \( Q \) given, write the position vector \( \overrightarrow{OQ} \) in terms of \( \hat{i} \) and \( \hat{j} \).
\( Q~(3, -4) \)
\( Q~(-5, -1) \)
For each point \( Q \) in question 1, find the magnitude of the position vector \( \overrightarrow{OQ} \) and its direction relative to the positive \( x \)-axis.
For each point \( R \) given, find the magnitude of the position vector \( \overrightarrow{OR} \).
\( R~(4, -3, 12) \)
\( R~(2, -1, 3) \)
Write the position vectors of the point \( A \) shown, in the form \( a\hat{i} + b\hat{j} + c\hat{k} \).
Draw a sketch to show the point \( D~(4, 2, -3) \) and draw the position vector \( \overrightarrow{OD} \).
Determine the direction angles for each of the following vectors.
\( \vec{v} = 2\hat{i} - \hat{j} + 3\hat{k} \)
\( \overrightarrow{OA} = (-1, 4, -5) \)
\( \vec{u} = 5\hat{i} - 12\hat{k} \)
\( \overrightarrow{OB} = (0, 3, -4) \)
Each of the following general points lie on a coordinate axis and/or on a coordinate plane. If the point lies on a coordinate axis, state the axis on which it lies. For all other points, state the coordinate plane on which it lies.
\( A~(x, y, 0) \)
\( B~(0, 0, z) \)
\( C~(x, 0, z) \)
\( D~(0, y, 0) \)
\( E~(0, y, z) \)
\( F~(x, 0, 0) \)
Given that \( \left \lvert \vec{v} \right \rvert = 3\sqrt{5} \) and the direction angles of \( \vec{v} \) are \( \alpha = 41.8^\circ, \beta = 107.3^\circ \), and \( \gamma = 126.6^\circ \), write \( \vec{v} \) in the form \( a\hat{i} + b\hat{j} + c\hat{k} \). Round the components of \( \vec{v} \) to the nearest integer.
Find a unit vector parallel to each of the given vectors.
\( \vec{v} = (2, -5) \)
\( \overrightarrow{OZ} = \hat{i} - 2\hat{j} + 4\hat{k} \)
\( \vec{w} = (-5, 12) \)
\( \overrightarrow{OP} = 3\hat{i} + 3\hat{j} - \hat{k} \)
Find the \( 3 \) direction angles for a vector whose direction angles are all equal.
Previous
More
Quit
Next Unit Item
Next