Note that \(\sqrt{2020} \approx 44.94\) and so \(t_{2020}=45\).
This means that before this point in the sequence, we have included all terms with \(t_{n} \leq 44\).
According to our conjecture, the number of terms with \(t_n \leq 44\) should be
\[\begin{align*} 2+4+6+\cdots + 86+88\ & \class{timed in6}{= 2(1+2+3+\cdots+43+44)} \\ & \class{timed in7}{= 2\left(\tfrac{1}{2}(44)(45)\right)} \\ & \class{timed in8}{= 44(45)}\\ & \class{timed in8}{=1980 } \end{align*}\]
Note that \(\sqrt{1980}\approx 44.497\) giving \(t_{1980}=44\), and \(\sqrt{1981} \approx 44.508\) giving \(t_{1981} = 45\).
Since \(t_{1981}=t_{2020}=45\), then each of the terms from \(t_{1981}\) to \(t_{2020}\) equals \(45\).
Therefore, there are \(40\) terms that equal \(45\).
Thus, the required sum equals
\[ 2\left(\frac{1}{1}\right)+4\left(\frac{1}{2} \right)+6\left(\frac{1}{3} \right)+\cdots + 86\left(\frac{1}{43} \right)+88\left(\frac{1}{44} \right)+40\left(\frac{1}{45} \right) \class{timed in15}{= 2+2+2+\cdots + 2 + 2 + \frac{8}{9} }\]
where there are \(44\) copies of \(2\).
Therefore, the sum equals \(88\frac{8}{9}\).