Extending the Power of a Power Rule


Slide Notes

Glossary

All Slides

 

Example 2

Simplify \((ab)^2\).

 

 

Example 3

Simplify \((a^6b^9)^3\).

Solution

Example 3 Revisited

 Simplify \((a^6b^9)^3\).

 

Example 4

Simplify \(\left(\dfrac{a}{b}\right)^2\) where \(b\ne0\).

Paused Finished
Slide /

Example 5

Use the power of a power rule to simplify \((5x^7)^4\).

Solution

\( (5x^7)^4\)

 \(=(5)^4(x^7)^4\)

 

 

 \(=5^{(4)}x^{(7)(4)}\)

  • Remember to distribute the exponent \(4\) to the \(5\) and \(x^7\) within the brackets.

 

 \(=5^{4}x^{28}\)

  • Note that we can evaluate \(5^4\) as \(625\).

 

 \(=625x^{28} \)

 

Example 6

Use the power of a power rule to simplify \(\left(\dfrac{a^4}{b^5}\right)^2\).

Solution

\[\begin{align*} \left(\frac{a^4}{b^5}\right)^2 &=\frac{a^{(4)(2)}}{b^{(5)(2)}}\\ &=\frac{a^8}{b^{10}} \end{align*}\]

Recall

Distribute the exponent \(2\) to both powers within the brackets. 

Example 7

Use the power of a power rule to simplify  \(\left(\dfrac{3^2a^8}{4b^5}\right)^2\).

Solution

\[\begin{align*} \left(\frac{3^2a^8}{4b^5}\right)^2 &=\frac{3^{(2)(2)}a^{(8)(2)}}{4^{(2)}b^{(5)(2)}}\\ &=\frac{3^4a^{16}}{4^{2}b^{10}}\\ &=\frac{81a^{16}}{16b^{10}} \end{align*}\]

Note that we can evaluate \(3^4\) as \(81\), and \(4^2\) as \(16\).


Check Your Understanding 2


Simplify the following expression.

\(((((((exp(r))*(e))*(s))*(s))*(i))*(o))*(n)\)

Enter \(a^b\) as "\(a^{\wedge} b\)" and \(\dfrac{a}{b}\) as "\(a/b\)".

There appears to be a syntax error in the question bank involving the question field of this question. The following error message may help correct the problem:

null