Negative Integer Exponents


Explore This 2



Explore This 2 Summary

In this exploration, you had a chance to look at the effect that a negative exponent has on a positive base. You have probably noticed that when an exponent is negative, the power is small and can be expressed as a fraction.

Base of \(3\) and Exponent of \(-5\)

This would give us \(3^{-5}=\dfrac{1}{243}\).

Base of \(7\) and Exponent of \(-2\)

This would give us \(7^{-2}=\dfrac{1}{49}\).

The value of both examples is a fraction! Let's look at the math behind it.

Example 3

Evaluate \(\dfrac{2^2}{2^5}\) using the exponent quotient rule and using expanded form.

Solution

Exponent Quotient Rule

\[\begin{align*} \frac{2^2}{2^5}&=2^{2-5}\\ &=2^{-3} \end{align*}\]

Expanded Form

\[\begin{align*} \frac{2^2}{2^5}&=\frac{\cancel{2}\times \cancel{2}}{2\times 2\times 2\times \cancel{2}\times \cancel{2}}\\ &=\frac{1}{2\times 2\times 2}\\ &=\frac{1}{2^3} \end{align*}\]

These solutions result in different looking answers. We know that our math is correct using both methods, so it must mean that these two final answers are in fact equivalent, \(2^{-3}=\dfrac{1}{2^3}\).

Convince yourself that the result would be the same with a different base (except \(0\)) and with different integer exponents. 

Rule

For negative exponents: \(x^{-a}=\dfrac{1}{x^a}\), for \(x\neq0\).

It is important to notice two things from the rule:

  • the base stays the same, and
  • the exponent becomes positive when the power is moved from the numerator to the denominator.

What happens when the negative exponent is in the denominator to start?

Remember that the fraction line means division, and remember the rules for dividing by a fraction.

\[\begin{align*} \frac{1}{x^{-1}}&=\frac{1}{\frac{1}{x^1}}\\ &=1\div\frac{1}{x^1}\\ &=1\times \frac{x^1}{1}\\ &=1\times x^1\\ &=x^1 \end{align*}\]

The base stayed the same, and the exponent became positive when the power moved from the denominator to the numerator.

To change an exponent from negative to positive, the base remains the same, the exponent changes sign, and the power moves from numerator to denominator or vice versa.

Example 4

Write each of the following with positive exponents.

  1. \(2^{-1}\)
  2. \(\left(\dfrac{2}{3}\right)^{-1}\)
  3. \(8^{-2}\)
  4. \((-3)^{-5}\)
  5. \(\dfrac{1}{x^{-4}}\)

Solution:

  1. For \(2^{-1}\), the exponent \(-1\) has a base of \(2\). The power with a negative exponent is in the numerator. To write the power with a positive exponent, keep the base the same, change the exponent to positive and move to the denominator.\[\begin{align*} 2^{-1}&=\frac{1}{2^1}\\ &=\frac{1}{2} \end{align*}\]

    Notice that \(2\) and \(\dfrac{1}{2}\) are reciprocals of one another. Since \(2^{-1}=\dfrac{1}{2}\), an exponent of \(-1\) produces the reciprocal of the base, in this case \(2\).

  2. For \(\left(\dfrac{2}{3}\right)^{-1}\), the exponent of \(-1\) applies to everything inside of the bracket. To write this with a positive exponent, keep the base the same, change the exponent to positive, and move \(3^1\) to the numerator and \(2^1\) to the denominator.\[\begin{align*} \left(\frac{2}{3}\right)^{-1}&=\frac{2^{-1}}{3^{-1}}\\ &=\frac{3^1}{2^1}\\ &=\frac{3}{2} \end{align*}\]Again, notice that \(\dfrac{2}{3}\) and \(\dfrac{3}{2}\) are reciprocals of one another, so an exponent of \(-1\) produces the reciprocal of the base.
  3. For \(8^{-2}\), the exponent \(-2\) has a base of \(8\). The power with a negative exponent is in the numerator. To write the power with a positive exponent, keep the base the same, change the exponent to positive, and move to the denominator.\[8^{-2}=\frac{1}{8^2}\]The question stated to write with positive exponents, so we stop here rather than evaluating \(8^2\).
  4. For \((-3)^{-5}\), the exponent \(-5\) has a base of \((-3)\). The power with a negative exponent is in the numerator. To write the power with a positive exponent, keep the base the same, change the exponent to positive, and move to the denominator.\[(-3)^{-5}=\frac{1}{(-3)^5}\]The question stated to write with positive exponents, so we stop here rather than evaluating \((-3)^5\).
  5. For \(\dfrac{1}{x^{-4}}\), we will have two approaches for writing with positive exponents:
     

    Approach 1: Division of fractions

    Using division of fractions we get that

    \[\begin{align*} \frac{1}{x^{-4}}&=\frac{1}{\frac{1}{x^4}}\\ &=1\div\frac{1}{x^4}\\ &=1\times x^4\\ &=x^4 \end{align*}\]

    Approach 2: Exponent Law

    The power with a negative exponent is in the denominator. To write the power with a positive exponent, keep the base the same, change the exponent to positive, and move to the numerator, so \(\dfrac{1}{x^{-4}}=x^4\).


Check Your Understanding 3


There appears to be a syntax error in the question bank involving the question field of this question. The following error message may help correct the problem:
null


Example 5

Simplify each of the following. Write your final answer with positive exponents.

  1. \(5x^{-7}\)
  2. \((2m^{-8})(5m^3)\)
  3. \(\dfrac{49a^5b^2}{7a^2b^6}\)
  4. \(\dfrac{(2x^2y^4)^2}{2^3x^6y^3}\)

Solution

  1. For \(5x^{-7}\), the exponent \(-7\) has a base of \(x\), while \(5\) has an exponent of \(1\). Since \(5\) has a positive exponent but \(x\) does not, then only \(x^7\)moves to the denominator. Therefore,\[\begin{align*} 5x^{-7}&=5^1x^{-7}\\ &=5\left(\frac{1}{x^7}\right)\\ &=\frac{5}{x^7} \end{align*}\]
  2. For \((2m^{-8})(5m^3)\), when asked to simplify, follow the order of BEDMAS. Using the exponent rules previously learned and then ensuring that our answer has positive exponents, we get\[\begin{align*} (2m^{-8})(5m^3)&=10m^{-8+3}\\ &=10m^{-5}\\ &=10\left(\frac{1}{m^5}\right)\\ &=\frac{10}{m^5} \end{align*}\]
  3. For \(\dfrac{49a^5b^2}{7a^2b^6}\), using BEDMAS and previously learned exponent rules, we get that\[\begin{align*} \frac{49a^5b^2}{7a^2b^6}&=\frac{49}{7}a^{5-2}b^{2-6}\\ &=7a^3b^{-4}\\ &=7a^3\left(\frac{1}{b^4}\right)\\ &=\frac{7a^3}{b^4} \end{align*}\]
  4. For \(\dfrac{(2x^2y^4)^2}{2^3x^6y^3}\), using BEDMAS and previously learned exponent rules, we get that\[\begin{align*} \frac{(2x^2y^4)^2}{2^3x^6y^3}&=\frac{2^2(x^2)^2(y^4)^2}{2^3x^6y^3}\\ &=\frac{2^2x^4y^8}{2^3x^6y^3}\\ &=2^{2-3}x^{4-6}y^{8-3}\\ &=2^{-1}x^{-2}y^5\\ &=\frac{1}{2}\frac{1}{x^2}y^5\\ &=\frac{y^5}{2x^2} \end{align*}\]

Try This Revisited

The length of one red blood cell is approximately \(8.5\) micrometres or \(8.5\times 10^{-3}\) millimetres.  

  1. What is the length of ten red blood cells (in millimetres)?
  2. What about the length of one hundred red blood cells (in millimetres)?

A single red blood cell with length of approximately 8.5 times 10 to the power negative 3 millimetres.

Solution

  1. The length of ten red blood cells can be found by multiplying the length of one blood cell by \(10\) and then simplifying:\[\begin{align*} 8.5\times 10^{-3}\times 10&=8.5\times 10^{-3+1}\\ &=8.5\times 10^{-2} \end{align*}\]Therefore, the length of ten red blood cells is \(8.5\times 10^{-2}\) millimetres.
  2. What about one hundred red blood cells (in millimetres)?

    Start by thinking of \(100\) as \(10^2\).

    \[\begin{align*} 8.5\times 10^{-3}\times 10^2&=8.5\times 10^{-3+2}\\ &=8.5\times 10^{-1} \end{align*}\]

    Therefore, the length of \(100\) red blood cells is \(8.5\times 10^{-1}\) millimetres.


Check Your Understanding 4


There appears to be a syntax error in the question bank involving the question field of this question. The following error message may help correct the problem:
null