Rationalizing the Denominator


Slide Notes

Glossary

All Slides

Rationalizing the Denominator

It is often preferable to rewrite fractions with radicals in the denominator as equivalent fractions with radicals in the numerator only.

\(\dfrac{2}{\sqrt{3}}=\dfrac{2\sqrt{3}}{3}\)

 

Example 15

Rationalize the denominator of \(\dfrac{4}{\sqrt{3}}\).

 

Example 15 Continued

Rationalize the denominator of \(\dfrac{4}{\sqrt{3}}\).

 

Example 16

Rationalize the denominator of \(\dfrac{5\sqrt{3}}{\sqrt{2}}\).

 

Example 17

Rationalize the denominator of \(\dfrac{2}{5\sqrt{6}}\).

Paused Finished
Slide /

Check Your Understanding 4


Rationalize the denominator of \(\dfrac{a}{c\sqrt{b}}\).

Enter \(\sqrt{a}\) as "sqrt\((a)\)" and \(\dfrac{a}{b}\) as "\(a/b\)".

There appears to be a syntax error in the question bank involving the question field of this question. The following error message may help correct the problem:

null

So far, all of the examples we have seen have a single term in their numerator.  This won't always be the case; however, the process is the same even if we have more than one term in the numerator.

Example 18

Rationalize the denominator of \(\dfrac{10-\sqrt{5}}{\sqrt{5}}\).

Solution

Approach 1

Rewrite this fraction without \(\sqrt{5}\) in the denominator.

\(\dfrac{10-\sqrt{5}}{\sqrt{5}}\;\)

\(=\dfrac{10-\sqrt{5}}{\sqrt{5}}\times\dfrac{\sqrt{5}}{\sqrt{5}}\)

  • Multiply numerator and denominator by \(\sqrt{5}\) .

 

\(=\dfrac{(10-\sqrt{5})\times\sqrt{5}}{\sqrt{5}\times\sqrt{5}}\)

  • Expand and simplify both the numerator and denominator.

 

\(=\dfrac{10\sqrt{5}-\sqrt{5\times5}}{\sqrt{5\times5}}\)

 

 

\(=\dfrac{10\sqrt{5}-\sqrt{25}}{\sqrt{25}}\)

 

 

\(=\dfrac{10\sqrt{5}-5}{5}\)

  • Common factor \(5\) from both terms in the numerator.

 

\(=\dfrac{5(2\sqrt{5}-1)}{5}\)

  • Reduce the fraction.

 

\(=\dfrac{5}{5}(2\sqrt{5}-1)\)

 

 

\(=2\sqrt{5}-1\)

 

Approach 2

You may have recoginzed that \(\sqrt{x}\times \sqrt{x}=x\) for \(x \geq 0\). If you recognized this, the same steps can be followed as above but the solution can be shortened to:

\(\dfrac{10-\sqrt{5}}{\sqrt{5}}\;\)

\(=\dfrac{10-\sqrt{5}}{\sqrt{5}}\times\dfrac{\sqrt{5}}{\sqrt{5}}\)

  • Multiply numerator and denominator by \(\sqrt{5}\).

 

\(=\dfrac{10\sqrt{5}-\sqrt{5}\times \sqrt{5}}{5}\)

  • Expand and simplify both the numerator and denominator.

 

\(=\dfrac{10\sqrt{5}-5}{5}\)

 

 

\(=\dfrac{5(2\sqrt{5}-1)}{5}\)

  • Common factor \(5\) from both terms in the numerator.

 

\(=\dfrac{5}{5}(2\sqrt{5}-1)\)

  • Reduce the fraction.

 

\(=2\sqrt{5}-1\)

 

Before we continue our work with radicals, let's review expanding binomials using difference of squares. 

Recall

Difference of Squares:

\((a+b)(a-b)=a^2-b^2\)

For instance, 

\((x+2)(x-2)\)

\(=x^2-2x+2x-4\)

 

\(=x^2-4\)

Example 19

Simplify \((\sqrt{2}+\sqrt{7})(\sqrt{2}-\sqrt{7})\).

Solution

\(\begin{align*} (\sqrt{2}+\sqrt{7})(\sqrt{2}-\sqrt{7}) &=\sqrt{2}(\sqrt{2})+\sqrt{2}(-\sqrt{7})+\sqrt{7}(\sqrt{2})+\sqrt{7}(-\sqrt{7}) \\ &=\sqrt{4}-\sqrt{14}+\sqrt{14}-\sqrt{49} \\ &=2 +0 -7 \\ &=-5 \end{align*}\)

Notice that we can evaluate two of the radicals and the remaining radicals have opposite values of one another.  This is not a coincidence!

\((\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})=a-b\) for \(a\),\(b \geq 0\)

 

The Conjugate

Let's take a look at the conjugate for radical binomials. The conjugate for a radical expression \(a+b\sqrt{c}\)  has the same first and last term, but contains the opposite sign between these terms.

The conjugate of \(a+b\sqrt{c}\)  is \(a-b\sqrt{c}\) , for rational numbers \(a,~b\) and \(c\).

We can use the conjugate to rationalize the denominator of radical expressions, that is to rewrite a radical expression as an equivalent fraction with radicals in the numerator only.


Example 20

Rationalize the denominator of \(\dfrac{-3}{1+\sqrt{2}}\).

The conjugate of the radical expression \(1+\sqrt{2}\)  is \(1-\sqrt{2}\).

Approach 1 — Expand the denominator

\(\dfrac{-3}{1+\sqrt{2}}\;\)

\(=\dfrac{-3}{1+\sqrt{2}}\times\dfrac{1-\sqrt{2}}{1-\sqrt{2}}\)

  • Multiply numerator and denominator by \(1-\sqrt{2}\).

 

\(=\dfrac{-3\times(1-\sqrt{2})}{(1+\sqrt{2})(1-\sqrt{2})}\)

  • Do not expand the numerator.

 

\(= \dfrac{-3\times(1-\sqrt{2})}{1-\sqrt{2}+\sqrt{2}-\sqrt{4}}\)

  • Expand and simplify the denominator.

 

\(= \dfrac{-3\times(1-\sqrt{2})}{1-2}\)

 

 

\(= \dfrac{-3\times(1-\sqrt{2})}{-1}\)

 

 

\(= \dfrac{-3}{-1}(1-\sqrt{2})\)

  • Reduce the fraction.

 

\(=3(1-\sqrt{2})\)

 

Approach 2 — Use difference of squares, \((a+b)(a-b)=a^2-b^2\), to simplify the denominator

\(\dfrac{-3}{1+\sqrt{2}}\)

\(=\dfrac{-3}{1+\sqrt{2}}\times\dfrac{1-\sqrt{2}}{1-\sqrt{2}}\)

  • Multiply numerator and denominator by \(1-\sqrt{2}\).

 

\(=\dfrac{-3\times(1-\sqrt{2})}{(1+\sqrt{2})(1-\sqrt{2})}\)

  • Do not expand the numerator.

 

\(= \dfrac{-3(1-\sqrt{2})}{(1)^2-(\sqrt{2})^2}\)

  • Expand and simplify the denominator (using difference of squares).

 

\(= \dfrac{-3(1-\sqrt{2})}{1-2}\)

  • Reduce the fraction.

 

\(= \dfrac{-3(1-\sqrt{2})}{-1}\)

 

 

\(= \dfrac{-3}{-1}(1-\sqrt{2})\)

 

 

\(=3(1-\sqrt{2})\)

 

It is more efficient to simplify the expression by using the difference of squares. This method will be used moving forward.

Example 21

Rationalize the denominator of \(\dfrac{1+\sqrt{3}}{2-\sqrt{5}}\).

Solution

The conjugate of \(2-\sqrt{5}\) is \(2+\sqrt{5}\).

\(\dfrac{1+\sqrt{3}}{2-\sqrt{5}}\;\)

\(=\dfrac{1+\sqrt{3}}{2-\sqrt{5}}\times\dfrac{2+\sqrt{5}}{2+\sqrt{5}}\)

  • Multiply the numerator and denominator by \(2+\sqrt{5}\).

 

\(=\dfrac{(1+\sqrt{3})(2+\sqrt{5})}{(2-\sqrt{5})(2+\sqrt{5})}\)

  • Expand and simplify the denominator (using difference of squares).

 

\(=\dfrac{(1+\sqrt{3})(2+\sqrt{5})}{(2)^2-(\sqrt{5})^2}\)

 

 

\(=\dfrac{(1+\sqrt{3})(2+\sqrt{5})}{4-5}\)

 

 

\(=\dfrac{(1+\sqrt{3})(2+\sqrt{5})}{-1}\)

  • Remember that dividing by \(-1\) is equivalent to multilpying by \(-1\). 

 

\(=-1((1+\sqrt{3})(2+\sqrt{5}))\)

  • Expand using the distributive property.

 

\(=-1(2+\sqrt{5}+2\sqrt{3}+\sqrt{15})\)

 

 

\(=-2-\sqrt{5}-2\sqrt{3}-\sqrt{15}\)

 

Example 22

Rationalize the denominator of \(\dfrac{a}{\sqrt{a}-\sqrt{b}}\).

Solution

The denominator in this example looks a little different from those that we have seen in previous examples.  We can rationalize the denominator by multiplying numerator and denominator by \(\sqrt{a}+\sqrt{b}\).

\(\dfrac{a}{\sqrt{a}-\sqrt{b}}\;\)

\(=\dfrac{a}{\sqrt{a}-\sqrt{b}}\times \dfrac{\sqrt{a}+\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)

  • Multiply the numerator and denominator by \(\sqrt{a}+\sqrt{b}\).

 

\(=\dfrac{a(\sqrt{a}+\sqrt{b})}{(\sqrt{a}-\sqrt{b})(\sqrt{a}+\sqrt{b})}\)

  • Expand and simplify the denominator (using difference of squares).

 

\(=\dfrac{a(\sqrt{a}+\sqrt{b})}{(\sqrt{a})^2-(\sqrt{b})^2}\)

 

 

\(=\dfrac{a(\sqrt{a}+\sqrt{b})}{a-b}\)

 

 

\(=\dfrac{a(\sqrt{a}+\sqrt{b})}{a-b}\)

 

Note that we could have also multiplied numerator and denominator by \(-\sqrt{a}-\sqrt{b}\) to rationalize the denominator.


Check Your Understanding 5



Try This Revisited

Each expression is equivalent to one other expression in the following list.

Identify the pairs of equivalent expressions.

  1. \(\sqrt{2}\left(\sqrt{2}+\sqrt{32}\right)\)
  2. \((5+\sqrt{3})(4-\sqrt{2})\)
  3. \(\sqrt{48}+20-\sqrt{6}-\sqrt{50}\)
  4. \(1-\sqrt{18}+\sqrt{2}-\sqrt{16}\)
  5. \(\sqrt{27}+\sqrt{100}-\sqrt{3}-\sqrt{12}\)
  6. \(\dfrac{1+\sqrt{2}}{1-\sqrt{2}}\)

Begin by simplifying each expression. Then compare simplified expressions for equivalency.

Solution — Part A

Expand and simplify.

\[\begin{align*} \sqrt{2}\left(\sqrt{2}+\sqrt{32}\right)&=\sqrt{2}\times \sqrt{2}+\sqrt{2}\times \sqrt{32}\\ &=\sqrt{4}+\sqrt{64}\\ &=2+8\\ &=10 \end{align*}\]

Solution — Part B

Use the Distributive Property to expand and simplify.

\[\begin{align*} (5+\sqrt{3})(4-\sqrt{2})&=20+5(-\sqrt{2})+\sqrt{3}(4)+\sqrt{3}(-\sqrt{2})\\ &=20-5\sqrt{2}+4\sqrt{3}-\sqrt{6} \end{align*}\]

Solution — Part C

Rewrite each term as a mixed radical, then collect like terms.

\[\begin{align*} \sqrt{48}+20-\sqrt{6}-\sqrt{50}&=\sqrt{16\times3}+20-\sqrt{6}-\sqrt{25\times2}\\ &=\sqrt{16}\sqrt{3}+20-\sqrt{6}-\sqrt{25}\sqrt{2}\\ &=4\sqrt{3}+20-\sqrt{6}-5\sqrt{2}\\ \end{align*}\]

Solution — Part D

Rewrite each term as a mixed radical, then collect like terms.

\[\begin{align*} 1-\sqrt{18}+\sqrt{2}-\sqrt{16}&=1-\sqrt{9\times2}+\sqrt{2}-4\\ &=1-\sqrt{9}\sqrt{2}+\sqrt{2}-4\\ &=1-3\sqrt{2}+\sqrt{2}-4\\ &=-3-2\sqrt{2} \end{align*}\]

Solution — Part E

Rewrite each term as a mixed radical, then collect like terms.

\[\begin{align*} \sqrt{27}+\sqrt{100}-\sqrt{3}-\sqrt{12}&=\sqrt{9\times3}+10-\sqrt{3}-\sqrt{4\times3}\\ &=\sqrt{9}\sqrt{3}+10-\sqrt{3}-\sqrt{4}\sqrt{3}\\ &=3\sqrt{3}+10-\sqrt{3}-2\sqrt{3}\\ &=10 \end{align*}\]

Solution — Part F

Rationalize the denominator.

\[\begin{align*} \dfrac{1+\sqrt{2}}{1-\sqrt{2}}&=\dfrac{1+\sqrt{2}}{1-\sqrt{2}}\times\dfrac{1+\sqrt{2}}{1+\sqrt{2}}\\ &=\dfrac{(1+\sqrt{2})(1+\sqrt{2})}{(1-\sqrt{2})(1+\sqrt{2})}\\ &=\dfrac{(1+\sqrt{2})^2}{1-2}\\ &=\dfrac{(1+\sqrt{2})^2}{-1}\\ &=-(1+\sqrt{2})^2 \end{align*}\]

We can see that:

  • Parts a) and e) both simplify to \(10\), so \(\sqrt{2}\left(\sqrt{2}+\sqrt{32}\right)\) and \(\sqrt{27}+\sqrt{100}-\sqrt{3}-\sqrt{12}\) are equivalent expressions.
  • Parts b) and c) both simplify to \(4\sqrt{3}+20-\sqrt{6}-5\sqrt{2}\), so \((5+\sqrt{3})(4-\sqrt{2})\) and \(\sqrt{48}+20-\sqrt{6}-\sqrt{50}\) are equivalent expressions.
  • Part d) simplifies to \(-3-2\sqrt{2}\) and part f) simplifies to \(-(1+\sqrt{2})^2\). They do not appear the same but they are also not in the same form. Expand part f), and then compare the simplified expressions.

    \[\begin{align*} -(1+\sqrt{2})^2&=-(1+\sqrt{2})(1+\sqrt{2})\\ &=-\left(1+\sqrt{2}+\sqrt{2}+\sqrt{4} \right)\\ &=-\left(1+2\sqrt{2}+2 \right)\\ &=-\left(3+2\sqrt{2} \right)\\ &=-3-2\sqrt{2} \end{align*}\]
  • Parts d) and f) both simplify to \(-3-2\sqrt{2}\), so \(1-\sqrt{18}+\sqrt{2}-\sqrt{16}\) and \(\dfrac{1+\sqrt{2}}{1-\sqrt{2}}\) are equivalent expressions.