Try This Revisited
Each expression is equivalent to one other expression in the following list.
Identify the pairs of equivalent expressions.
- \(\sqrt{2}\left(\sqrt{2}+\sqrt{32}\right)\)
- \((5+\sqrt{3})(4-\sqrt{2})\)
- \(\sqrt{48}+20-\sqrt{6}-\sqrt{50}\)
- \(1-\sqrt{18}+\sqrt{2}-\sqrt{16}\)
- \(\sqrt{27}+\sqrt{100}-\sqrt{3}-\sqrt{12}\)
- \(\dfrac{1+\sqrt{2}}{1-\sqrt{2}}\)
Begin by simplifying each expression. Then compare simplified expressions for equivalency.
Solution — Part A
Expand and simplify.
\[\begin{align*} \sqrt{2}\left(\sqrt{2}+\sqrt{32}\right)&=\sqrt{2}\times \sqrt{2}+\sqrt{2}\times \sqrt{32}\\ &=\sqrt{4}+\sqrt{64}\\ &=2+8\\ &=10 \end{align*}\]
Solution — Part B
Use the Distributive Property to expand and simplify.
\[\begin{align*} (5+\sqrt{3})(4-\sqrt{2})&=20+5(-\sqrt{2})+\sqrt{3}(4)+\sqrt{3}(-\sqrt{2})\\ &=20-5\sqrt{2}+4\sqrt{3}-\sqrt{6} \end{align*}\]
Solution — Part C
Rewrite each term as a mixed radical, then collect like terms.
\[\begin{align*} \sqrt{48}+20-\sqrt{6}-\sqrt{50}&=\sqrt{16\times3}+20-\sqrt{6}-\sqrt{25\times2}\\ &=\sqrt{16}\sqrt{3}+20-\sqrt{6}-\sqrt{25}\sqrt{2}\\ &=4\sqrt{3}+20-\sqrt{6}-5\sqrt{2}\\ \end{align*}\]
Solution — Part D
Rewrite each term as a mixed radical, then collect like terms.
\[\begin{align*} 1-\sqrt{18}+\sqrt{2}-\sqrt{16}&=1-\sqrt{9\times2}+\sqrt{2}-4\\ &=1-\sqrt{9}\sqrt{2}+\sqrt{2}-4\\ &=1-3\sqrt{2}+\sqrt{2}-4\\ &=-3-2\sqrt{2} \end{align*}\]
Solution — Part E
Rewrite each term as a mixed radical, then collect like terms.
\[\begin{align*} \sqrt{27}+\sqrt{100}-\sqrt{3}-\sqrt{12}&=\sqrt{9\times3}+10-\sqrt{3}-\sqrt{4\times3}\\ &=\sqrt{9}\sqrt{3}+10-\sqrt{3}-\sqrt{4}\sqrt{3}\\ &=3\sqrt{3}+10-\sqrt{3}-2\sqrt{3}\\ &=10 \end{align*}\]
Solution — Part F
Rationalize the denominator.
\[\begin{align*} \dfrac{1+\sqrt{2}}{1-\sqrt{2}}&=\dfrac{1+\sqrt{2}}{1-\sqrt{2}}\times\dfrac{1+\sqrt{2}}{1+\sqrt{2}}\\ &=\dfrac{(1+\sqrt{2})(1+\sqrt{2})}{(1-\sqrt{2})(1+\sqrt{2})}\\ &=\dfrac{(1+\sqrt{2})^2}{1-2}\\ &=\dfrac{(1+\sqrt{2})^2}{-1}\\ &=-(1+\sqrt{2})^2 \end{align*}\]
We can see that:
- Parts d) and f) both simplify to \(-3-2\sqrt{2}\), so \(1-\sqrt{18}+\sqrt{2}-\sqrt{16}\) and \(\dfrac{1+\sqrt{2}}{1-\sqrt{2}}\) are equivalent expressions.