Point-Slope Form of a Line


Point-Slope Form

Another common form of an equation of a line is referred to as the point-slope form, and is written as:

\[y-y_1=m(x-x_1)\]

This equation can be developed from the slope formula.

Recall

Our slope formula is given by

\[\begin{align*} m&=\dfrac{\Delta y}{\Delta x}\\ m&=\dfrac{y_2-y_1}{x_2-x_1} \end{align*}\]

where we use two points \((x_1,y_1)\) and \((x_2,y_2)\) to complete the slope calculation.

We can rearrange this formula into the point-slope form of a linear equation.

  • We will keep the point \((x_1,y_1)\) as \((x_1,y_1)\), but we will rename \((x_2,y_2)\) as just \((x,y)\).

  • \((x_1,y_1)\) continues to represent a specific known point on the line. \((x,y)\) now represents a general unknown point on the line, and provides the variables \(x\) and \(y\) in our linear equation.
  • Multiply both sides by \((x-x_1)\) to get the point-slope form.
\[\begin{align*} m&=\dfrac{\Delta y}{\Delta x}\\ m&=\dfrac{y-y_1}{x-x_1} \\ m(x-x_1) &=y-y_1 \\ y-y_1&=m(x-x_1) \end{align*}\]

Example 4

A line has a slope of \(-2\) and passes through the point \((8,11)\).

  1. Determine the equation of the line in point-slope form.
  2. Rearrange the point-slope form into \(y=mx+b\) (slope, \(y\)-intercept) form.

Solution — Part A

We can substitute \(m=-2\), \(x_1=8\), and \(y_1=11\) into the general point-slope form \(y-y_1=m(x-x_1)\):

\[\begin{align*} y-y_1=m(x-x_1)\\ y-11=-2(x-8) \end{align*}\]

Therefore, the equation of this line in point-slope form is \(y-11=-2(x-8)\).

Solution — Part B

We can expand the right side of the equation using the distributive property, and then isolate for \(y\) using inverse operations.

\[\begin{align*} y-11&=-2(x-8)\\ y-11&=-2x+16\\ y&=-2x+16+11\\ y&=-2x+27 \end{align*}\]

Example 5

A line passes through the points \((-6,9)\) and \((10,21)\).

Determine the equation of the line in point-slope form.

Solution

First, we will calculate the slope using the two given points and the slope formula.

\(\begin{align*} m&=\dfrac{\Delta y}{\Delta x}\\ &=\dfrac{y_2-y_1}{x_2-x_1}\\ &=\dfrac{21-9}{10-(-6)}\\ &=\dfrac{12}{16}\\ &=\dfrac{3}{4} \end{align*}\)

We can now substitute the slope and one of the given points into the point-slope form. It does not matter which point we use. We will show both options give the same line.

Method 1: Use the point \((-6,9)\)

\(m=\dfrac{3}{4}\), \(x_1=-6\) and \(y_1=9\)

\[\begin{align*} y-y_1=m(x-x_1)\\ y-9=\dfrac{3}{4}(x-(-6)) \\ y-9=\dfrac{3}{4}(x+6) \tag{1} \end{align*}\]

Method 2: Use the point \((10,21)\)

\(m=\dfrac{3}{4}\), \(x_1=10\) and \(y_1=21\)

\[\begin{align*} y-y_1=m(x-x_1)\\ y-21=\dfrac{3}{4}(x-10) \tag{2} \end{align*}\]

At first glance the slope-point equations of the line appear different. If we rearrange them both into \(y=mx+b\) form, we will see that they represent the same line.

Rearranging Equation \((1)\), we get:

\[\begin{align*} y-9&=\dfrac{3}{4}(x+6)\\ y-9&=\dfrac{3}{4}x+\dfrac{18}{4}\\ y&=\dfrac{3}{4}x+\dfrac{18}{4} +9\\ y&=\dfrac{3}{4}x+\dfrac{9}{2} +\dfrac{18}{2}\\ y&=\dfrac{3}{4}x+\dfrac{27}{2} \end{align*}\]

The line \(y-9=\dfrac{3}{4}(x+6)\) in point-slope form is equivalent to the line \(y=\dfrac{3}{4}x+\dfrac{27}{2}\) in slope y-intercept form. 

Rearranging Equation \((2)\), we get:

\[\begin{align*} y-21&=\dfrac{3}{4}(x-10)\\ y-21&=\dfrac{3}{4}x-\dfrac{30}{4}\\ y&=\dfrac{3}{4}x-\dfrac{30}{4} +21\\ y&=\dfrac{3}{4}x-\dfrac{15}{2} +\dfrac{42}{2}\\ y&=\dfrac{3}{4}x+\dfrac{27}{2}\\ \end{align*}\]

 The line \(y-21=\dfrac{3}{4}(x-10)\) in point-slope form is equivalent to the line \(y=\dfrac{3}{4}x+\dfrac{27}{2}\) in slope y-intercept form. 


Check Your Understanding 4


There appears to be a syntax error in the question bank involving the question field of this question. The following error message may help correct the problem:
null