Consider that \(\sin(2\theta)\) can be expressed as \(\sin(\theta + \theta)\).
Using the angle sum formula for sine, \(\sin(A + B) = \sin(A)\cos(B) + \cos(A)\sin(B)\), we have
\(=\sin(\theta + \theta)\)
\(=\sin(\theta)\cos(\theta) + \cos(\theta)\sin(\theta)\)
\(=2\sin(\theta)\cos(\theta)\)
Thus, the double angle formula for sine is \(\sin(2\theta) = 2\sin(\theta)\cos(\theta)\).