Slide Notes

Glossary

All Slides

Introduction

Example 1 — Part A

Example 1 — Part B

Consider the two functions \(f(x) = x\) and \(g(x) = x^2 - 4\).

Example 1 — Part B Continued

Consider the two functions \(f(x) = x\) and \(g(x) = x^2 - 4\).

b. Identify the coordinates of the point on each function \(f\), \(g\), \(f \cdot g\), and \(\dfrac{f}{g}\) when \(x = -1\). What do you notice?

Solution

\(f(x)\)

\(= x\)

\(f(-1)\)

\(= -1\)

\(g(x)\)

\(= x^2 - 4\)

\(g(-1)\)

\(= (-1)^2 - 4\)

 

\(= -3\)

\((f \cdot g)(x)\)

\(= x^3 - 4x\)

\((f \cdot g)(-1)\)

\(= (-1)^3 - 4(-1)\)

\( \)

\(= 3\)

\(\left(\dfrac{f}{g}\right)(x)\)

\(= \dfrac{x}{x^2 - 4}\)

\(\left(\dfrac{f}{g}\right)(-1)\)

\(= \dfrac{-1}{(-1)^2 - 4}\)

\( \)

\(= \dfrac{1}{3}\)

Similarly, the corresponding point on \(\left(\dfrac{f}{g}\right)(x)\) is \(\left(-1,\dfrac{1}{3}\right)\).

 

Check Your Understanding A

Given ((P)*(f))*1.0 and ((P)*(f))*2.0 are two points of f and ((P)*(g))*1.0 and ((P)*(g))*2.0 are two points on g , determine the coordinates of the corresponding points on (f)*(g). Keep the value of the coordinates exact.

 

There appears to be a syntax error in the question bank involving the question field of this question. The following error message may help correct the problem:
null


Preview  
 and There appears to be a syntax error in the question bank involving the question field of this question. The following error message may help correct the problem:
null


Preview  

For any given value of x in the domain of both f and g, the corresponding y-coordinate on the (((((((((((t)*(y))*(p))*(e))*(F))*(u))*(n))*(c))*(t))*(i))*(o))*(n) function, (((F)*(B))*(f))*(g), can be obtained by ((((((((((((t)*(y))*(p))*(e))*(O))*(p))*(e))*(r))*(a))*(t))*(i))*(o))*(n) the corresponding ((((((F)*(B))*(e))*(x))*(t))*(r))*(a).

 

If ((P)*(f))*1.0 is on f and ((P)*(g))*1.0 is on g, then (((F)*(B))*(P))*1.0=(((((a)*(n))*(s))*1.0)*(m))*(l) is on (f)*(g).

 

If ((P)*(f))*2.0 is on f and ((P)*(g))*2.0 is on g, then (((F)*(B))*(P))*2.0=(((((a)*(n))*(s))*2.0)*(m))*(l) is on (f)*(g).

 

Thus, the two corresponding points on (f)*(g) are (((((a)*(n))*(s))*1.0)*(m))*(l) and (((((a)*(n))*(s))*2.0)*(m))*(l).

Example 1 — Part C

Consider the two functions \(f(x) = x\) and \(g(x) = x^2 - 4\).

Example 1 — Part C Continued

Consider the two functions \(f(x) = x\) and \(g(x) = x^2 - 4\).

c. Using the graphs of \(f(x) = x\) and \(g(x) = x^2 - 4\), sketch the graphs of \(y = (f \cdot g)(x)\) and \(y = \left(\dfrac{f}{g}\right)(x)\).

Solution

graphs showing the function f(x), g(x), y=(f*g)(x) and y = (f/g)(x)

Example 1 — Part C Continued

Consider the two functions \(f(x) = x\) and \(g(x) = x^2 - 4\).

c. Using the graphs of \(f(x) = x\) and \(g(x) = x^2 - 4\), sketch the graphs of \(y = (f \cdot g)(x)\) and \(y = \left(\dfrac{f}{g}\right)(x)\).

Solution

Example 1 — Part C Continued

Consider the two functions \(f(x) = x\) and \(g(x) = x^2 - 4\).

c. Using the graphs of \(f(x) = x\) and \(g(x) = x^2 - 4\), sketch the graphs of \(y = (f \cdot g)(x)\) and \(y = \left(\dfrac{f}{g}\right)(x)\).

Solution

Example 1 — Part C Continued

Consider the two functions \(f(x) = x\) and \(g(x) = x^2 - 4\).

c. Using the graphs of \(f(x) = x\) and \(g(x) = x^2 - 4\), sketch the graphs of \(y = (f \cdot g)(x)\) and \(y = \left(\dfrac{f}{g}\right)(x)\).

Solution

Example 1 — Part C Continued

Consider the two functions \(f(x) = x\) and \(g(x) = x^2 - 4\).

c. Using the graphs of \(f(x) = x\) and \(g(x) = x^2 - 4\), sketch the graphs of \(y = (f \cdot g)(x)\) and \(y = \left(\dfrac{f}{g}\right)(x)\).

Solution

Example 1 — Part C Continued

Consider the two functions \(f(x) = x\) and \(g(x) = x^2 - 4\).

c. Using the graphs of \(f(x) = x\) and \(g(x) = x^2 - 4\), sketch the graphs of \(y = (f \cdot g)(x)\) and \(y = \left(\dfrac{f}{g}\right)(x)\).

Solution

Example 1 — Part C Continued

Consider the two functions \(f(x) = x\) and \(g(x) = x^2 - 4\).

c. Using the graphs of \(f(x) = x\) and \(g(x) = x^2 - 4\), sketch the graphs of \(y = (f \cdot g)(x)\) and \(y = \left(\dfrac{f}{g}\right)(x)\).

Solution

Paused Finished
Slide /