Parent Quadratic Function: \(y=x^2\)
Domain: \(\{x ~ | ~ x \in \mathbb{R}\}\)
Range: \(\{y ~ | ~ y \geq 0, y \in \mathbb{R}\}\)
Function: \(y=-2(x-1)^2+3\)
Range: \(\{y ~ | ~ y \leq 3, y \in \mathbb{R}\}\)
Parent Cubic Function: \(y=x^3\)
Range: \(\{y ~ | ~ y \in \mathbb{R}\}\)
Parent Quartic Functions: \(y=x^4\)
Transformations on a function \(y=f(x)\) can be identified when the function is in the form
Cubic \(f(x)=x^3\)
Quartic \(f(x)=x^4\)
Let's review the role of the parameters \(a\), \(b\), \(h\), and \(k\) in transforming these functions.