Help
Toggle navigation
System Homepage
Advanced Functions and Pre-Calculus
Exponential and Logarithmic Functions
Properties and Laws of Logarithms
Watch
Lesson Part 1 (5:52)
Lesson Part 2 (5:54)
Lesson Part 3 (4:19)
Lesson Part 4 (3:27)
Lesson Part 5 (4:41)
Lesson Part 6 (4:10)
Alternative Format
Review
01.
02.
03.
04.
05.
06.
07.
08.
Practise
Exercises
Answers
Solutions
Exercises
Evaluate each logarithm without using a calculator.
\( \log (100000) \)
\(\log (0.001)\)
\(\log (1)\)
\(\log \left( \log_2 (1024) \right)\)
\(\log_2 \left(\log \left(\sqrt{10} \right) \right)\)
\(3^{\log_3(81)}\)
\(10^{\log (0.0001)}\)
\(6^{\log_6 (12)}\)
\(4^{\log_{16} \left(\frac{1}{4}\right)}\)
Identify the restrictions on \(x\). Convert each equation to the equivalent exponential form and solve for \(x\).
\( \log_8 \left(\dfrac{1}{16\sqrt{2}}\right)= x\)
\( \log_3 (4x+6)=2\)
\( \log (3x-2)=1\)
\( \log_x (16) = -2\)
\( \log_x (64) = \frac{3}{2}\)
\( \log_x (6-x)=2\)
Using the law of logarithms, write each expression as a single logarithm in simplest form. State any restrictions on the variables.
\( \log_2 (r) + \log_2 (s) - \log_2 (t) \)
\( 3\log (a)-2\log (3b) \)
\( \dfrac{\log(x)}{\log(y)} \)
\( \dfrac{1}{2}\log_5(4x)-\log_5(x-3) \)
\( \dfrac{1}{4}\Big(\log (y-1) + \log(x+1)\Big) \)
\( 3\log_3 a -\log_3 b-\dfrac{1}{2}\log_3 c \)
Simplify, then evaluate without using a calculator.
\(\log_6 (18) + \log_6 (2)\)
\(\log_2 (56) - \log_2 (7)\)
\(\log (4) -4\log (2) - \log (25)\)
\(5^{2\log_5 (6)}\)
\(3\log_5 (10) - \log_5 (40)\)
\(\log_4 (24)- 2\log_4 (3) + \dfrac{1}{2}\log_4 (144)\)
\(\dfrac{\log_3 (216)}{\log_3 (6)}\)
\(9^{\log_3(12)-\log_3(3)} \)
\(3\log (200) - \dfrac{1}{2}\log (64) \)
Express each of the following in terms of \( \log_2(a)\), \( \log_2(b)\), and/or \( \log_2(c)\), where \(a,b,c \gt 0\).
\(\log_2(8a)\)
\(\log_2(a^2b)\)
\(\log_2 \left(\dfrac{\sqrt{a}}{bc}\right)\)
\(\log_2(\frac{1}{2}ab)^5\)
\(\log_2 \left(\dfrac{a^2\sqrt{b}}{c^3}\right)\)
\(\log_2\left(\dfrac{2}{\sqrt[4]{8bc}}\right)\)
Determine the value of each to three decimal places of accuracy.
\(\log (185)\)
\(\log_3 (65)\)
\(\log_8 (5)\)
\(2\log_{\frac{1}{4}} (24)\)
Using logarithms, solve for \(x\) to three decimal places of accuracy.
\(10^x=50\)
\(3^x=35\)
\((0.5)^{2x}=10\)
\(2^{x-3}=18.5\)
Show that \(\log_c (a) = \dfrac{1}{\log_a (c)}\), where \(a, c \gt 0\).
Show that \(\log_a (b)\log_b(c)=\log_a (c)\), where \(a, b, c \gt 0\).
The graph of \(f(x)=\log_2 \left(4x^3\right)\) can be obtained by transforming the graph of \(f(x)=\log_2 (x)\). Using the laws of logarithms, express \(f(x)=\log_2 \left(4x^3\right)\) in terms of \(\log_2 (x)\) and sketch its graph. Using graphing technology and the original version of the equation of the function, graph \(f(x)=\log_2 \left(4x^3\right)\). What do you notice?
Using graphing technology, graph \(g(x)=\log_2 \left(x^2\right)\) and \(h(x)=2\log_2 (x)\). What do you notice?
Can you explain why the laws of logarithms worked appropriately in part a) but not in part b)?
Given \(f(x)=\dfrac{2^{\frac{1}{x}+1}}{1+2^{\frac{1}{x}+1}}\) and \(g(x)=\log_2\left(\dfrac{f(x)}{1-f(x)}\right)\), show that \(xg(x)-g\left(\dfrac{1}{x}\right)=0\) for all \(x\neq0, x \in\mathbb{R}\).
Previous
More
Quit
Previous Unit Item
Next Unit Item
Next