-
There are no restrictions on \(x\).
Converting \(\log_8 \left(\frac{1}{16\sqrt{2}}\right)= x\) to exponential form we have
\[\begin{align*} 8^x &= \frac{1}{16\sqrt{2}} \\ \left(2^3\right)^x &= 2^{-4}\left(2^{-\frac{1}{2}}\right) \end{align*}\]
So, \( 3x=-\frac{9}{2}\), therefore \(x=-\frac{3}{2}\).
-
Restrictions: \( 4x+6 \gt 0 \), so \( x \gt -\frac{3}{2} \).
Converting \(\log_3 (4x+6)=2\) to exponential form we have
\[\begin{align*} 3^2 &= 4x+6 \\ 4x &= 9-6 \end{align*}\]
Therefore, \(x=\frac{3}{4} \).
-
Restrictions: \( 3x-2 \gt 0 \) so \( x \gt \frac{2}{3} \).
Converting \( \log (3x-2)=1 \) to exponential form, we have
\[\begin{align*} 10^1 &= 3x-2 \\ 3x &= 12 \end{align*}\]
Therefore, \( x=4 \).
-
Restrictions: \( x \gt 0 \)
Converting \( \log_x (16) = -2 \) to exponential form, we have
\[\begin{align*} x^{-2} &= 16 \\ \left(x^{-2}\right)^{-\frac{1}{2}} &= \pm 16^{-\frac{1}{2}} \\ x &= \pm \frac{1}{\sqrt{16}} \end{align*}\]
However \(x \gt 0\), therefore \( x=\frac{1}{4}\).
-
Restrictions: \(x \gt 0\)
Converting \(\log_x (64) = \frac{3}{2}\) to exponential form, we have
\[\begin{align*} x^{\frac{3}{2}} &= 64 \\ \left(x^{\frac{3}{2}}\right)^{\frac{2}{3}} &= 64^{\frac{2}{3}} \\ x &= \sqrt[3]{64}^2 \end{align*}\]
Therefore, \( x=16 \).
-
Restrictions: \(x \gt 0\) and \(6-x \gt 0\), so \(0\lt x \lt 6\).
Converting \(\log_x (6-x)=2\) to exponential form, we have
\[\begin{align*} x^2 &= 6-x \\ x^2+x-6 &= 0 \\ (x+3)(x-2) &= 0 \\ x &= -3, 2 \end{align*}\]
However \( 0 \lt x \lt 6 \), therefore \( x=2 \).