\[\begin{align*} & 2\sin{\left(\dfrac{\pi}{6}\right)}\tan{\left(\dfrac{\pi}{6}\right)} -1 \\ & = 2\left(\dfrac{1}{2}\right)\left(\dfrac{1}{\sqrt{3}}\right)-1 \\ & = \dfrac{\sqrt{3}}{3}-1 \\ & = \dfrac{\sqrt{3}-3}{3}\\ \end{align*}\]
\[\begin{align*} & \tan{\left(\dfrac{\pi}{6}\right)} -2 \sin{\left(\dfrac{\pi}{6}\right)} \\ & = \dfrac{1}{\sqrt{3}} - 2\left(\dfrac{1}{2}\right) \\ & = \dfrac{\sqrt{3}}{3}-1 \\ & = \dfrac{\sqrt{3}-3}{3}\\ \end{align*}\]
So, \(2\sin{\left(\dfrac{\pi}{6}\right)}\tan{\left(\dfrac{\pi}{6}\right)} -1 = \tan{\left(\dfrac{\pi}{6}\right)} -2 \sin{\left(\dfrac{\pi}{6}\right)}\)
\[\begin{align*} & 2\sin{\left(\dfrac{3\pi}{4}\right)}\tan{\left(\dfrac{3\pi}{4}\right)} -1 \\ & = 2\left(\dfrac{1}{\sqrt{2}}\right)\left(-1\right)-1 \\ & = -\sqrt{2}-1 \\ \end{align*}\]
\[\begin{align*} & \tan{\left(\dfrac{3\pi}{4}\right)} -2 \sin{\left(\dfrac{3\pi}{4}\right)} \\ & = -1 - 2\left(\dfrac{1}{\sqrt{2}}\right) \\ & = -1 - \sqrt{2}\\ \end{align*}\]
So, \(2\sin{\left(\dfrac{3\pi}{4}\right)}\tan{\left(\dfrac{3\pi}{4}\right)} -1 = \tan{\left(\dfrac{3\pi}{4}\right)} -2 \sin{\left(\dfrac{3\pi}{4}\right)}\). Therefore, the equation is true for \( x = \dfrac{\pi}{6} \) and \( x = \dfrac{3\pi}{4} \).
This is not sufficient evidence to conclude that \( 2\sin{(x)}\tan{(x)} -1= \tan{(x)} -2 \sin{(x)} \) is an identity since this does not prove that the statement is true for all permissible values of the variable \( x \).