Help
Toggle navigation
System Homepage
Advanced Functions and Pre-Calculus
Trigonometric Identities and Equations
Double Angle Formulas
Watch
Lesson Part 1 (3:26)
Lesson Part 2 (4:29)
Lesson Part 3 (4:52)
Lesson Part 4 (5:17)
Alternative Format
Review
01.
02.
Practise
Exercises
Answers
Solutions
Exercises
Use an appropriate double angle formula to rewrite each expression as a single trigonometric ratio.
\( 6 \sin{(3x)} \cos{(3x)} \)
\( 1-2 \cos^2{\left(\frac{\alpha}{2}\right)} \)
\( \dfrac{\tan{(\theta)}}{\tan^2{(\theta)}-1} \)
\( \dfrac{\cos^2{(3y)}-\sin^2{(3y)}}{\sin{(3y)}\cos{(3y)}} \)
Simplify each of the following trigonometric expressions using an appropriate double angle formula, then determine the exact value of the expression.
\( 1-2 \sin^2{\left(\dfrac{11\pi}{8}\right)} \)
\( 1 - 2\cos^2{(105^\circ)} \)
\( 4 \sin (112.5^\circ) \cos (112.5^\circ) \)
\( \dfrac{1-\tan^2{\left(\frac{\pi}{12}\right)}}{\tan{\left(\frac{\pi}{12}\right)}} \)
\( \cos^2(\dfrac{11\pi}{12}) \)
Rewrite each of the following trigonometric ratios using a double angle formula for sine, cosine or tangent.
\( \cos{(4A)} \)
\( \sin {(3\alpha)} \)
\( \cos{(-x)} \)
\( \cot {\left(\dfrac{\theta}{2}\right)} \)
Given \( \sin{(\theta)}=\dfrac{3}{4} \) where \( \frac{\pi}{2} \leq \theta \leq \pi \), determine the exact value of \( \sin{(2\theta)} \).
Given \( \cos{(2\theta)}=-\dfrac{7}{8} \), where \( 2\theta \) is an angle in standard position with a terminal arm in quadrant 3, determine the exact value of \( \cos{(\theta)} \) and \( \sin{(\theta)} \).
Given \( \sin{(100^\circ)}=k \), determine an expression for each of the following in terms of \( k \).
\( \cos{(200^\circ)} \)
\( \sin{(200^\circ)} \)
\( \sin{(20^\circ)} \)
Determine the exact value of each.
\( \cos{(22.5^\circ)} \)
\( \sin {\left(\dfrac{7\pi}{12}\right)} \)
\( \tan{\left(\dfrac{5\pi}{8}\right)} \)
Prove the following.
\( \cos^4{(\beta)}-\sin^4{(\beta)}=\cos{(2\beta)} \)
\( \cos{(2\theta)} = \dfrac{1-\tan^2{(\theta)}}{1+\tan^2{(\theta)}} \)
\( \tan (x) + \cot (x) = 2\csc(2x) \)
\( \tan (y) = \dfrac{\sin (2y) + \sin (y)}{1+\cos (y) + \cos (2y)} \)
\( \dfrac{2\cos {(2\theta)}}{\sin{(2\theta)} - 2 \sin^2{(\theta)}}=1+\cot{(\theta)} \)
\( \sec{(2x)} = \dfrac{ \csc^2 {(x)}}{\csc^2{(x)}-2} \)
\( 2\sin{(\theta+\beta)}\cos{(\theta-\beta)}=\sin{(2\theta)}+\sin{(2\beta)} \)
\( \dfrac{1+\sin{(2x)}-\cos{(2x)}}{1+\sin{(2x)}+\cos{(2x)}}=\tan{(x)} \)
Derive a formula for
\( \sin{(3\theta)} \) in terms of \( \sin{(\theta)} \)
\( \cos{(4\theta)} \) in terms of \( \cos{(\theta)} \)
\( \cot{(2\theta)} \) in terms of \( \cot{(\theta)} \)
For a right triangle \( ABC \) (shown to the right) with \( \angle C = \frac{\pi}{2} \), show that the area of the triangle is given by \( \dfrac{1}{4}c^2\sin{(2A)} \) or \( \dfrac{1}{4}c^2\sin{(2B)} \).
Using appropriate double angle formulas and your knowledge of transformations, sketch the graphs of \( f(x)= 2\sin^2{(x)} \) and \( g(x)=3\sin{(2x)}\cos{(2x)}-1 \).
Previous
More
Quit
Previous Unit Item
Next Unit Item
Next