Slide Notes

Glossary

All Slides

Example 5

Example 5 – Continued

Find all possible functions \(f\) such that \(f(x) = ax + b\) and \(f\left(f\left(f(x)\right)\right) = bx - a^2\) with \(a \neq 0\), \(b \neq 0\), \(a\), \(b \in \mathbb{R}\).

Solution

Example 5 – Continued

Find all possible functions \(f\) such that \(f(x) = ax + b\) and \(f\left(f\left(f(x)\right)\right) = bx - a^2\) with \(a \neq 0\), \(b \neq 0\), \(a\), \(b \in \mathbb{R}\).

Solution

Example 5 – Continued

Find all possible functions \(f\) such that \(f(x) = ax + b\) and \(f\left(f\left(f(x)\right)\right) = bx - a^2\) with \(a \neq 0\), \(b \neq 0\), \(a\), \(b \in \mathbb{R}\).

Solution

Summary

Paused Finished
Slide /