Slide Notes

Glossary

All Slides

In This Module

Factor Using the Factor Theorem 

 

Check Your Understanding A

Fully factor (c)*3.0 x 3 ((p)*(m))*2.0(c)*2.0 x 2 ((p)*(m))*1.0(c)*1.0 x ((p)*(m))*0.0(c)*0.0 . Use the factor theorem.

 

(Click on Equation Editor Symbol to access the Equation Editor.)

There appears to be a syntax error in the question bank involving the question field of this question. The following error message may help correct the problem:

null

Preview Change entry mode 

If Px=(c)*3.0x3((p)*(m))*2.0(c)*2.0x2((p)*(m))*1.0(c)*1.0x((p)*(m))*0.0(c)*0.0, P((r)*2.0) = 0  so x(((F)*2.0)*(p))*(m)((r)*2.0)*(a)  is a factor.

The corresponding quadratic factor can be found using long division, synthetic division or the "have and need" method.

 (c)*3.0x3((p)*(m))*2.0(c)*2.0x2((p)*(m))*1.0(c)*1.0x((p)*(m))*0.0(c)*0.0

= x(((F)*2.0)*(p))*(m)((r)*2.0)*(a)((q)*(c))*2.0x2(((q)*(p))*(m))*1.0((((q)*(c))*1.0)*(r))*(a)x(((q)*(p))*(m))*0.0((((q)*(c))*(r))*0.0)*(a)

=x(((F)*2.0)*(p))*(m)((r)*2.0)*(a)(a)*(d)x(((F)*1.0)*(p))*(m)(b)*(a)x(((F)*3.0)*(p))*(m)((r)*3.0)*(a)

Note: P(((r)*1.0)*(d)) = 0 and P((r)*3.0) = 0  so we could have begun the factoring process with the factor ((a)*(d)x (((F)*1.0)*(p))*(m) (b)*(a)) or (x (((F)*3.0)*(p))*(m) ((r)*3.0)*(a)).

Paused Finished
Slide /