The point \( (x, y) \) on the graph of \( y = f(x) \) maps to the point \( \left(x, \dfrac{1}{y} \right) \) on \( y = \dfrac{1}{f(x)} \).
\((-3, -3)\) on \(f(x)=x\) maps to \((-3, -1/3)\) on \(y=1/f(x)\).
Points on the polynomial function with a \( y \)-coordinate of \( 1 \) or \( -1 \) will remain stationary for the graph of the reciprocal.
\((1,1)\) and \((1,-1)\) remain stationary when \(f(x)=x\).