Help
Toggle navigation
System Homepage
Advanced Functions and Pre-Calculus
Polynomial Functions
All Exercises, Answers, and Solutions
Exercises
Answers
Solutions
Answers
Transformations of Simple Polynomial Functions
Reflected in the \( y \)-axis, stretched horizontally about the \( y \)-axis by a factor of \( \frac{1}{3} \), translated left \( 1 \) unit and down \( 2 \) units
Reflected in the \( x \)-axis, stretched vertically about the \( x \)-axis by a factor of \( \frac{1}{5} \), translated right \( 4 \) units and up \( 1 \) unit.
IV
I
II
III
\( y = x^3 \); reflected in the \( x \)-axis, stretched vertically about the \( x \)-axis by a factor of \( 2 \), translated left \( 3 \) units
\( y = x^4 \); stretched vertically about the \( x \)-axis by a factor of \( \frac{1}{2} \), translated down \( 5 \) units
\( y = x^3 \); stretched horizontally about the \( y \)-axis by a factor of \( 2 \), translated right \( 2 \) units
\( y = x^4 \); reflected in the \( x \)-axis, stretched horizontally about the \( y \)-axis by a factor of \( \frac{1}{2} \), translated up \( 7 \) units
Domain: \( \{ x \mid x \in \mathbb{R} \} \)
Range: \( \{ y \mid y \in \mathbb{R} \} \)
Domain: \( \{ x \mid x \in \mathbb{R} \} \)
Range: \( \{ y \mid y \geq -5, y \in \mathbb{R} \} \)
Domain: \( \{ x \mid x \in \mathbb{R} \} \)
Range: \( \{ y \mid y \in \mathbb{R} \} \)
Domain: \( \{ x \mid x \in \mathbb{R} \} \)
Range: \( \{ y \mid y \leq 7, y \in \mathbb{R} \} \)
\( (x, y) \rightarrow (x, 3y + 2), y = 3x^3 + 2 \)
\( (x, y) \rightarrow (4x - 2, y), y = \left(\frac{1}{4}(x + 2)\right)^3 \)
\( (x, y) \rightarrow (-x + 3, \frac{1}{2}y), y = \frac{1}{2}\left( -(x - 3) \right)^3 \)
\( (x, y) \rightarrow (\frac{1}{4}x, -y + 2), y = -\left(4x\right)^3 + 2 \)
\( y = -6\left(x - 2\right)^3 + 4 \)
\( y = -3\left(x - 4\right)^4 + 2 \)
\( f(x) = 2x^3 - 5 \)
\( f(x) = -\frac{8}{81}(x - 2)^4 - 3 \)
\( f(x) = (x + 5)^4 + 2 \)
\( y = -3(x + 2)^3 - 3 \)
\( y = -\frac{1}{2}(x - 4)^4 + 5 \)
\( (x, y) \rightarrow ( x + 2, y + 4 ) \)
\( (x, y) \rightarrow ( x, \frac{5}{2}y - 7 ) \)
\( (x, y) \rightarrow ( x - \frac{5}{2}, 2y - 1 ) \)
\( (x, y) \rightarrow ( -\frac{1}{2}x + \frac{5}{2}, -y + 8 ) \)
\( (x + 2, y + 1) \)
\( (x, 5y) \)
\( (2(x - 2), -y) \)
\( \left( x - 3, -2(y - 4) \right) \)
One
Zero
One
Zero
\( y = -5x(x + 6)(x + 1) - 5 \)
Vertical stretch about the \( x \)-axis by factor of \( \frac{1}{6} \); horizontal translation \( 1 \) unit left
\( f(x) = x^3 + 10, g(x) = -\frac{2}{27}(x - 5)^3 - 21 \)
Characteristics of Polynomial Functions
End behaviour: As \( x \rightarrow \infty \), \( y \rightarrow -\infty \); as \( x \rightarrow -\infty \), \( y \rightarrow \infty \)
Maximum \( 2 \) turning points, minimum \( 0 \) turning points
Maximum \( 3 \) zeros, minimum \( 1 \) zero
End behaviour: \( y \rightarrow \infty \) as \( x \rightarrow \pm \infty \)
Maximum \( 3 \) turning points, minimum \( 1 \) turning point
Maximum \( 4 \) zeros, minimum \( 0 \) zeros
End behaviour: As \( x \rightarrow \infty \), \( y \rightarrow \infty \); as \( x \rightarrow -\infty \), \( y \rightarrow -\infty \)
Maximum \( 4 \) turning points, minimum \( 0 \) turning points
Maximum \( 5 \) zeros, minimum \( 1 \) zero
Minimum degree of four, leading coefficient negative
Minimum degree of three, leading coefficient positive
Minimum degree of six, leading coefficient positive
Minimum degree of five, leading coefficient negative
False
True
True
True
False
False
IV
II
VI
III
I
V
\( 0, 1, 2, 3, \) or \( 4 \) distinct zeros.
No zeros:
One zero:
Two zeros:
Three zeros:
Four zeros:
Answers may vary.
Answers may vary.
End behaviour: \( y \rightarrow \infty \) as \( x \rightarrow \pm \infty \)
\( x \)-intercepts: \( -4, -1, 1, 3 \)
\( y \)-intercept: \( 12 \)
\( y = -x(2x - 3)(x + 3)\)
End behaviour: \( y \rightarrow -\infty \) as \( x \rightarrow \infty \), \( y \rightarrow \infty \) as \( x \rightarrow -\infty \)
\( x \)-intercepts: \( -3, 0, \frac{3}{2} \)
\( y \)-intercept: \( 0 \)
Answers may vary.
Graphs of Polynomial Functions in Factored Form
V
VI
III
I
VII
Answers may vary.
Answers may vary.
Answers may vary.
Answers may vary.
Answers may vary.
\( f(x): \) degree \( 3 \)
\( g(x): \) degree \( 5 \)
\( f(x): \) \( x \)-intercepts at \( -5, 0, \frac{2}{3} \), \( y \)-intercept at \( 0 \)
\( g(x): \) \( x \)-intercepts at \( 0, 2 \), \( y \)-intercept at \( 0 \)
\( f(x): \) \( x \rightarrow -\infty, y \rightarrow \infty; x \rightarrow \infty, y \rightarrow -\infty \)
\( g(x): \) \( x \rightarrow -\infty, y \rightarrow -\infty; x \rightarrow \infty, y \rightarrow \infty \)
\( f(x) \):
\( g(x) \):
Answers may vary.
Answers may vary.
Answers may vary.
Answers may vary.
Answers may vary.
Answers vary. \( y = x(x - 1)^2, y = x^2(x - 1) \)
Answers vary. \( y = (x + 1)^2(x - 1)^2, y = x(x - 1)^3 \)
Answers vary. \( y = -(x - 1)^3(x + 1)^2, y = (x - 1)(x + 1)^4 \)
Answers may vary.
\( x \)-intercepts at \( -4, 0, 2 \); changes sign at \( x = 0, 2 \)
\( x \)-intercepts at \( -3, 4 \); changes sign at \( x = -3 \)
\( x \)-intercepts at \( -4, 1 \); does not change sign; \( y \leq 0 \) for all \( x \in \mathbb{R} \)
Positive on \( x \in (-4, -1) \cup (2, \infty) \); negative on \( x \in (-\infty, -4) \cup (-1, 2) \)
Positive on \( x \in (0, 4) \); negative on \( x \in (-\infty, -3) \cup (-3, 0) \cup (4, \infty) \)
Positive on \( x \in (-\infty, 0) \cup (0, 3) \); negative on \( x \in (3, \infty) \)
From the graph,
Increasing for \( x \in (-\infty, -1) \cup (3, \infty) \); decreasing for \( x \in (-1, 3) \)
\( -16 < c < 0 \)
\( c = 0 \) or \( c = -16 \)
\( c < -16 \) or \( c > 0 \)
no values for \( c \)
\( f(x) = k(x + 3)(x - 1)^2(x - 4)^2 \)
Two such functions are (note that \( k < 0 \) ):
\( f(x) = -(x + 3)(x - 1)^2(x - 4)^2 \)
\( g(x) = -2(x + 3)(x - 1)^2(x - 4)^2 \)
Answers may vary, but are of the form \( y = kx^3(x + 3)(x - 4)^2 \) for \( k < 0, k \in \mathbb{R} \).
Equations of Polynomial Functions in Factored Form
V
II
VIII
VI
III
IV
I
VII
\( y = k(x + 3)(2x + 1)(3x - 5), k \neq 0, k \in \mathbb{R} \)
\( y = k(x - 1)(x + 2)^2(x - 5)^3, k \neq 0, k \in \mathbb{R} \)
\( y = kx(3x - 2)^3, k \neq 0, k \in \mathbb{R} \)
\( y = k(x + 4)(x - 1)^2, k \lt 0, k \in \mathbb{R} \)
\( y = k(x^2 - 5)(x^2 + 2x - 1), k \neq 0, k \in \mathbb{R} \)
\( y = kx(x + 6)(x - 4), k \gt 0, k \in \mathbb{R} \)
\( y = k(x + 7)^2(x - 6), k \lt 0, k \in \mathbb{R} \)
\( y = kx^3(x - 4), k \lt 0, k \in \mathbb{R} \)
\( y = k(x + 3)^2(x - 4)^2, k \lt 0, k \in \mathbb{R} \)
\( y = k(x + 3)(x - 3)^3, k \gt 0, k \in \mathbb{R} \)
\( y = k(x + 4)(x + 2)(x+1)(x - 4)(x - 3)^2, k \lt 0, k \in \mathbb{R} \)
\( y = -\frac{1}{5}(2x + 1)(x - 5)(x - 2)^2 \)
\( y = \frac{1}{2}(x + 1)(x - 4)(x - 6) \)
\( y = k(x^2 + 6x + 4) \)
\( y = kx(x^2 - 2x - 11) \)
\( y = k(x + 2)(x - 1)(x^2 + 9) \)
\( y = k(x^2 - 6x + 7)(x^2 + 8x + 19) \)
Using zeros \( 4 \pm \sqrt{2}, -3 \pm \sqrt{6} \) and \( y \)-intercept \( (0, -21) \), \( y = -\frac{1}{2} (x^2 - 8x + 14)(x^2 + 6x + 3) \)
Positive: \( \{ x \mid x \neq -2, 2, x \in \mathbb{R} \} \)
Negative: No values of \( x \) for which \( f(x) \) is negative.
Increasing: \( \{ x \mid x \in (-2, 0) \cup (2, \infty), x \in \mathbb{R} \} \)
Decreasing: \( \{ x \mid x \in (-\infty, -2) \cup (0, 2), x \in \mathbb{R} \} \)
\( y = \frac{1}{10} (x + 1)(3x - 2)(x - 3) \)
\( \left(0, \frac{3}{5} \right) \)
\( y = -\frac{1}{10} (x + 1)(3x - 2)(x - 3) \)
\( y = -\frac{1}{10} (x - 1)(3x + 2)(x + 3) \)
\( y = -\frac{1}{8}(x - 3)(x - 1)(x - 7) \). The zeros of the new function are \(1, 3,\) and \(7\).
\( \frac{17}{4} \)
\( 0 \)
Finite Differences of Polynomial Functions
Quadratic
\( a = -3 \)
Cubic
\( a = 3 \)
Quartic
\( a = 2 \)
The \( 5^{th} \) difference is constant.
\( -480 \)
Answers may vary.
\( y = -\frac{10}{3}x^2(x + 5) \)
\( y = \frac{1}{2}\left (x - \frac{1}{2}\right )(x + 3)^3 \)
\( \Delta^3 y = 12, y = 2x^3 - 3x^2 + 12x - 4 \)
\( \Delta^3 y = -18, y = -3x^3 + 24x - 5 \)
\( \Delta^3 y = -6, y = -x^3 + 3x^2 + 2 \)
\( p(t) = t^3 - 27t^2 + 3t + 8538 \)
\( 8030 \)
\( p = 24536 \)
Not realistic; \( p \rightarrow \infty \) as \( t \rightarrow \infty \)
\( f(4) = 30,\ f(5) = 55,\ f(6) = 91,\ f(x) = \frac{1}{3}x^3 + \frac{1}{2}x^2 + \frac{1}{6}x \) or \( \dfrac{2x^3 + 3x^2 + x}{6} \)
\( f(n) = \frac{1}{2}n^2 + \frac{1}{2}n + 1 \left(\text{or } = 1 + \dfrac{n(n+1)}{2} \right) \)
Even and Odd Polynomial Functions
Odd degree
Odd
Odd degree
Neither
Odd degree
Odd
Even degree
Even
Even degree
Even
Odd degree
Neither
Even degree
Neither
Odd degree
Odd
Even degree
Even
Odd degree
Neither
Even
Neither
Odd
True
False
False
True
False
True
Answers may vary.
See solutions.
Odd
Answers may vary.
and
Answers may vary. One such equation is \( y = (x - 2)^2(x + 2)^2 \); note that \( f(-x) = (-x - 2)^2(-x + 2)^2 = (x + 2)^2(x - 2)^2 = f(x) \).
Answers may vary. One such equation is \( y = x(x - 2)(x + 2) \).
Not odd
Odd
Odd
Odd
Not odd
Odd
Not even
Even
Even
Even
Even
Even
Previous
More
Quit
Previous Unit Item
Next Unit Item
Next