Even and Odd Polynomial Functions

In This Module

- We will investigate the symmetry of higher degree polynomial functions.
- We will generalize a rule that will assist us in recognizing even and odd symmetry, when it occurs in a polynomial function.

Symmetry in Polynomials

Recall, a function can be even, odd, or neither depending on its symmetry.
If a function is symmetric about the y-axis, then the function is an even function and $f(-x)=f(x)$.
If a function is symmetric about the origin, that is $f(-x)=-f(x)$, then it is an odd function.
The cubic function, $y=x^{3}$, an odd degree
polynomial function, is an odd function.
That is, the function is symmetric about the origin.

Symmetry in Polynomials

The cubic function, $y=x^{3}$, an odd degree polynomial function, is an odd function.
That is, the function is symmetric about the origin.
If the graph of the function is reflected in the x-axis, followed by a reflection in the y-axis, it will map onto itself.

Symmetry in Polynomials

The cubic function, $y=x^{3}$, an odd degree polynomial function, is an odd function. That is, the function is symmetric about the origin.

If the graph of the function is reflected in the x-axis, followed by a reflection in the y-axis, it will map onto itself.

Algebraically,

$$
f(-x)=(-x)^{3}=-x^{3}=-f(x)
$$

Since $f(-x)=-f(x), y=x^{3}$ is an odd function.
Is this the case for all cubic functions?

Symmetry in Polynomials

Consider the following cubic functions and their graphs.
(1) $y=2 x^{3}+x^{2}-x+1$
(2) $y=x^{3}-2 x$
(3) $y=x^{3}-2 x-3$

(4) $y=x^{3}-2 x^{2}$

(5) $y=-2 x^{3}-x$

(6) $y=-\frac{1}{2} x^{3}+x$

Symmetry in Polynomials

(2) $y=x^{3}-2 x$
(5) $y=-2 x^{3}-x$
(6) $y=-\frac{1}{2} x^{3}+x$

What do these functions have in common?
They have a term of degree 3 and a term of degree 1 ; that is, an x^{3} term and an x term. The other 3 functions defined by

$$
y=2 x^{3}+x^{2}-x+1 \quad y=x^{3}-2 x-3 \quad y=x^{3}-2 x^{2}
$$

are neither even nor odd.
Along with an odd degree term, x^{3}, these functions also have terms of even degree; that is, an x^{2} term and/or a constant term of degree 0
It appears an odd polynomial must have only odd degree terms.

Symmetry in Polynomials

If we consider the general $3^{\text {rd }}$ degree polynomial function,

$$
f(x)=a x^{3}+b x^{2}+c x+d
$$

then

$$
\begin{aligned}
f(-x) & =a(-x)^{3}+b(-x)^{2}+c(-x)+d \\
& =-a x^{3}+b x^{2}-c x+d \\
& \neq f(x)
\end{aligned}
$$

for any values of a, b, c, or d since $a \neq 0$.
Therefore, a cubic function is never an even function.
Now, $-f(x)=-a x^{3}-b x^{2}-c x-d$, so $f(-x)=-f(x)$ when $b=0$ and $d=0$, that is when $f(x)=a x^{3}+c x$. Therefore, cubic functions of the form $f(x)=a x^{3}+c x, a \neq 0$, are odd functions.

Symmetry in Polynomials

Similarly, it should follow that even polynomial functions would have only even degree terms. If we consider the general $4^{\text {th }}$ degree polynomial function,

$$
f(x)=a x^{4}+b x^{3}+c x^{2}+d x+e
$$

then

$$
\begin{aligned}
f(-x) & =a(-x)^{4}+b(-x)^{3}+c(-x)^{2}+d(-x)+e \\
& =a x^{4}-b x^{3}+c x^{2}-d x+e
\end{aligned}
$$

Setting the coefficients $b=0$ and $d=0$ will result in $f(-x)=f(x)$, and hence an even function.
Therefore, quartic functions of the form $f(x)=a x^{4}+c x^{2}+e, a \neq 0$, are even functions.
And,

$$
\begin{aligned}
-f(x) & =-a x^{4}-b x^{3}-c x^{2}-d x-e \\
& \neq f(-x)
\end{aligned}
$$

for any values of a, b, c, or d since $a \neq 0$.
Therefore, a quartic function is never an odd function.

Symmetry in Polynomials

To illustrate the results graphically, we compare the following functions:
(1) $y=x^{4}+x^{3}-2 x^{2}-3 x+1$
(2) $y=x^{4}-2 x^{2}+1$
(3) $y=x^{4}+2 x^{3}$

(4) $y=x^{4}-2 x^{3}+x$
(5) $y=-2 x^{4}+x^{2}$
(6) $y=-2 x^{4}-x^{2}+4 x$

In Summary

- A polynomial function is an even function if and only if each of the terms of the function is of an even degree.
- A polynomial function is an odd function if and only if each of the terms of the function is of an odd degree.
- The graphs of even degree polynomial functions will never have odd symmetry.
- The graphs of odd degree polynomial functions will never have even symmetry.

Note: The polynomial function $f(x)=0$ is the one exception to the above set of rules. This function is both an even function (symmetrical about the y-axis) and an odd function (symmetrical about the origin).

Examples

Example 1

Sketch the graph of the function $y=-2 x^{4}+8 x^{2}$.
What do we know about this function?

- The function is an even degree polynomial with a negative leading coefficient. Therefore, $y \rightarrow-\infty$ as $x \rightarrow \pm \infty$.
- Since all of the terms of the function are of an even degree, the function is an even function. Therefore, the function is symmetrical about the y-axis
- The function in factored form is $y=-2 x^{2}\left(x^{2}-4\right)=-2 x^{2}(x-2)(x+2)$. Therefore, the zeros of the function are at $x= \pm 2$ and $x=0$ (multiplicity 2).

Examples

Sketch

Examples

Example 2

a. Show that every polynomial function can be expressed as the sum of an even and an odd polynomial function.

Solution

Let $P(x)$ be any polynomial function of the form

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\cdots+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}
$$

where the coefficients $a_{0}, a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ are real numbers, $n \geq 0$, and $n \in Z$.
If n is even, then

$$
\begin{aligned}
P(x)= & \left(a_{n} x^{n}+a_{n-2} x^{n-2}+\cdots+a_{2} x^{2}+a_{0}\right) & & \text { (even degree terms) } \\
& +\left(a_{n-1} x^{n-1}+a_{n-3} x^{n-3}+\cdots+a_{1} x\right) & & \text { (odd degree terms) }
\end{aligned}
$$

showing $P(x)$ as the sum of an even function and an odd function.
If n is odd, then

$$
\begin{aligned}
P(x)= & \left(a_{n} x^{n}+a_{n-2} x^{n-2}+\cdots+a_{3} x^{3}+a_{1} x\right) & & \text { (odd degree terms) } \\
& +\left(a_{n-1} x^{n-1}+a_{n-3} x^{n-3}+\cdots+a_{2} x^{2}+a_{0}\right) & & \text { (even degree terms) }
\end{aligned}
$$

showing $P(x)$ as the sum of an odd function and an even function.
Note: If $P(x)$ is an even function (or odd function), then $P(x)$ can be expressed as the sum of $P(x)$ and $f(x)=0$. (Recall: $f(x)=0$ is both an even and odd function.)

Examples

Example 2

b. Prove that every function can be expressed as the sum of an even and odd function.

Solution

Let $f(x)$ be any function. Observe that

$$
\begin{aligned}
f(x) & =\frac{2 f(x)}{2} \\
& =\frac{f(x)+f(x)}{2} \\
& =\frac{f(x)+0+f(x)}{2} \\
& =\frac{f(x)+(f(-x)-f(-x))+f(x)}{2} \\
& =\frac{(f(x)+f(-x))+(f(x)-f(-x))}{2} \\
& =\frac{f(x)+f(-x)}{2}+\frac{f(x)-f(-x)}{2}
\end{aligned}
$$

Let $g(x)=\frac{f(x)+f(-x)}{2}$ and $h(x)=\frac{f(x)-f(-x)}{2}$; therefore, $f(x)=g(x)+h(x)$.

Examples

Example 2
b. Prove that every function can be expressed as the sum of an even and odd function.

Solution

Let $g(x)=\frac{f(x)+f(-x)}{2}$ and $h(x)=\frac{f(x)-f(-x)}{2}$; therefore, $f(x)=g(x)+h(x)$.
Now, $g(-x)=\frac{f(-x)+f(-(-x))}{2}=\frac{f(-x)+f(x)}{2}=g(x)$, so $g(x)$ is even
And

$$
\begin{aligned}
h(-x) & =\frac{f(-x)-f(-(-x))}{2} \\
& =\frac{f(-x)-f(x)}{2} \\
& =\frac{-(f(x)-f(-x))}{2} \\
& =-\frac{f(x)-f(-x)}{2} \\
& =-h(x)
\end{aligned}
$$

so $h(x)$ is odd

Therefore, any function, $f(x)$, can be expressed as the sum of an even and odd function.

