Finite Differences Of Polynomial Functions

In This Module

 We v 	ill investigate	the behaviour	of finite difference	s for higher dear	ee polynomial functions
--------------------------	-----------------	---------------	----------------------	-------------------	-------------------------

Investigating Finite Differences of Polynomial Functions

A line has a constant rate of change, in other words, a constant slope. Consider the table of values for the linear function y = 3x - 2.

x	y = 3x - 2	1^{st} Difference Δy
-2	-8	-5 - (-8) = 3
-1	-5	-2 - (-5) = 3
0	-2	1 - (-2) = 3
1	1	4 - 1 = 3
2	4	

The x values in this table are in increments of 1, that is $\Delta x = 1$.

To calculate the first differences, denoted by Δy , we will compute the changes or differences in the y values of the function.

The first differences are equal, with a constant value of 3. Therefore, $\Delta y=3$ and $\Delta x=1$. So, the slope of the line $\frac{\Delta y}{\Delta x}$ is 3.

Finite Differences of Quadratic Functions

For a quadratic function, the rate of change of y as x changes is variable.

The parabola does not have a constant slope.

x	$y = -x^2 + 3x + 1$	1^{st} Difference Δy	2^{nd} Difference $\Delta^2 y$		
-2	-9	-3 - (-9) = 6	4 - 6 = -2		
-1	-3	1 - (-3) = 4	2 - 4 = -2		
0	1	3 - 1 = 2	0-2=-2		
1	3	3 - 3 = 0			
2	3				

With quadratic functions, the first differences, Δy , are variable.

But the difference in the first differences, that is, the second differences, denoted by $\Delta^2 y$, are constant.

Finite Differences of Quadratic Functions

Here are further examples to support this fact.

Tiere are further examples to su									
x	$y = x^2 + 4x - 3$	Δy	Δ^2						
-2	-7	1	2						
-1	-6	3	2						
0	-3	5	2						
1	2	7							
2	9								

 is iac			
x	$y = 5x^2 - 4x$	Δy	$\Delta^2 y$
-2	28	-19	10
-1	9	-9	10
0	0	1	10
1	1	11	
2	12		

$$\begin{array}{c|ccccc}
x & y = -3x^2 + 10 & \Delta y & \Delta^2 y \\
\hline
-2 & -2 & 9 & -6 \\
-1 & 7 & 3 & -6 \\
0 & 10 & -3 & -6 \\
1 & 7 & -9 & \\
2 & -2 & & \\
\end{array}$$

What might you expect to find with the finite differences of cubic or quartic functions?

Finite Differences of Cubic Functions

Consider the following finite difference tables for four cubic functions.

x	$y = x^3$	Δy	$\Delta^2 y$	$\Delta^3 y$	x	$y = -3x^3 + 2x^2$	Δy	$\Delta^2 y$	$\Delta^3 y$
-2	-8				-2	32	-27	22	-18
-1	-1	1	0	6	-1	5	-5	4	-18
0	0	1	6		0	0	-1	-14	
1	1	7			1	-1	-15		
2	8				2	-16			

x	$y = -4x^3 + 2x + 1$	Δy	$\Delta^2 y$	$\Delta^3 y$	x	$y = 2x^3 + x$	Δy	$\Delta^2 y$	$\Delta^3 y$
-2	29	-26	24	-24	-2	-18	15	-12	12
-1	3	-2	0	-24	-1	-3	3	0	12
0	1	-2	-24		0	0	3	12	
1	-1	-26			1	3	15		
2	-27				2	18			

The third differences, $\Delta^3 y$, are constant for these 3^{rd} degree functions.

Finite Differences of Quartic Functions

Consider the following finite difference tables for these quartic functions.

COIL	Jidei tile	IOIIOWI		te unit	sicilice tab	103 101	these qualitic fulleti	OHS.			
x	$y = x^4$	Δy	$\Delta^2 y$	$\Delta^3 y$	$\Delta^4 y$	x	$y = 2x^4 - x^2 - 1$	Δy	$\Delta^2 y$	$\Delta^3 y$	$\Delta^4 y$
-2	16	-15	14	-12	24	-2	27	-27	26	-24	48
-1	1	-1	2	12	24	-1	0	-1	2	24	48
0	0	1	14	36		0	-1	1	26	72	
1	1	15	50			1	0	27	98		
2	16	65				2	27	125			
3	81					3	152				

x	$y = -3x^4 + x - 1$	Δy	$\Delta^2 y$	$\Delta^3 y$	$\Delta^4 y$	x	$y = 3x^4 + x^2 - 1$	Δy	$\Delta^2 y$	$\Delta^3 y$	$\Delta^4 y$
-2	-51	46	-42	36	-72	-2	51	-48	44	-36	72
-1	-5	4	-6	-36	-72	-1	3	-4	8	36	72
0	-1	-2	-42	-108		0	-1	4	44	108	
1	-3	-44	-150			1	3	48	152		
2	-47	-194				2	51	200			
3	-241					3	251				

Once again, 4^{th} degree polynomials have constant fourth differences, denoted by $\Delta^4 y$.

Observations

Is there more to this pattern?

The last two quartic examples suggest a connection between the leading coefficient, a, of a polynomial and the value of the constant difference.

x	$y = -3x^4 + x - 1$	Δy	$\Delta^2 y$	$\Delta^3 y$	$\Delta^4 y$	x	$y = 3x^4 + x^2 - 1$	Δy	$\Delta^2 y$	$\Delta^3 y$	$\Delta^4 y$
-2	-51	46	-42	36	-72	-2	51	-48	44	-36	72
-1	-5	4	-6	-36	-72	-1	3	-4	8	36	72
0	-1	-2	-42	-108		0	-1	4	44	108	
1	-3	-44	-150			1	3	48	152		
2	-47	-194				2	51	200			
3	-241					3	251				

If you consider the last two quartic functions, the leading coefficients are opposite in sign (-3 and 3) and the value of the constant difference for each are opposite in sign (-72 and 72).

Observations

Let's compile the data for the preceding examples and compare the value of the leading coefficient to that of the constant difference for these functions.

	Quadratics	(2 nd degree)	Cubics (3	rd degree)
	Leading Coefficient	Constant Difference	Leading Coefficient	Constant Difference
	-1	-2	1	6
	5	10	-3	-18
	-3	-6	-4	-24
		'	2	12
	Quartics (4 th degree)		
	Leading Coefficient	Constant Difference		
	1	24		
	2	48		
ı	_3	_72		

72

Do you see a connection?

Observations

Quadratics (2^{nd} degree)

Leading Coefficient	Constant Difference
-1	-2
5	10
-3	-6
a	$a \times 2$

The value of the constant difference for quadratic functions is twice the value of the leading coefficient.

Cubics (3 ⁿ	degree)
------------------------	---------

Constant Difference
6
-18
-24
12
$a \times 6$

For the cubic functions, the constant difference is 6 times the leading coefficient.

Quartics ((4 th degree)	

Leading Coefficient	Constant Difference
1	24
2	48
-3	-72
3	72
a	$a \times 24$

With the quartic functions, the constant difference is 24 times the leading coefficient.

Observations

There is actually a connection between the value of this multiple and the degree of the polynomial.

 $2^{\it nd}$ degree - multiply leading coefficient by 2

 $2 = 2 \times 1$

 $3^{\it rd}$ degree - multiply leading coefficient by 6

 $6 = 3 \times 2 \times 1$

4th degree - multiply leading coefficient by 24

 $24 = 4 \times 3 \times 2 \times 1$

 $2,\,6,\,\mbox{and}\,\,24$ are values that have special significance in math.

The Value of Constant Difference

For a positive integer n, n! (n factorial) is defined by:

$$n! = n \times (n-1) \times (n-2) \times \cdots \times 2 \times 1$$

Therefore, 2! = 2, 3! = 6, and 4! = 24.

From our observation, it appears that the n^{th} differences are constant for a polynomial of degree n; the value of the constant difference is given by $\Delta^n y = a \times n!$ where a is the leading coefficient of the function and n is the degree of the polynomial.

This last observation works only if the change in x in the table of values is 1, that is $\Delta x = 1$, which is the case for all the tables presented previously.

The Value of Constant Difference

In actual fact, if f(x) is an n^{th} degree polynomial function, then

$$\frac{(\Delta^n y)}{(\Delta x)^n} = a \times n!$$

where $\Delta^n y$ is the n^{th} constant difference and Δx is the difference in x-values.

So, the n^{th} differences of the polynomial are given by

$$\Delta^n y = a \times n! \times (\Delta x)^n$$

When $\Delta x = 1$, then $\Delta^n y = a \times n!$

The Value of Constant Difference

Example 1

Consider the cubic function $y = -2x^3 + 5x$. Here is a table of values for the function, where the $\Delta x = 2$.

x	$y = -2x^3 + 5x$	Δy	$\Delta^2 y$	$\Delta^3 y$
-3	39	-42	48	-96
-1	-3	6	-48	-96
1	3	-42	-144	-96
3	-39	-186	-240	
5	-225	-426		
7	-651			

This cubic has a constant third difference of -96.

The leading coefficient, a, is -2. The degree of the function is 3. So, n=3 and $\Delta x=2$. Notice,

$$a \times n! \times (\Delta x)^n = -2 \times 3! \times 2^3$$
$$= -96$$
$$= \Delta^3 y$$

The Value of Constant Difference

Example 1

It is very important to note that when we are working with finite differences, the differences in the x values in the table must be constant.

x	$y = -2x^3 + 5x$	Δy	$\Delta^2 y$	$\Delta^3 y$	Δx	x	$y = -2x^3 + 5x$	Δy	$\Delta^2 y$	$\Delta^3 y$
-3	39	-42	48	-96	1	-3	39	-33	30	-36
-1	-3	6	-48	-96	3	-2	6	-3	-6	-204
1	3	-42	-144	-96	1	1	3	-9	-210	-330
3	-39	-186	-240		3	2	-6	-219	-540	
5	-225	-426			3	5	-225	-759		
7	-651					8	-984			

We can see from this table that a constant third difference is not obtained with the same cubic function used previously.

This is due to the fact that the change in the x values in the table is not constant.

Identifying Polynomial Functions from a Table of Values

Finite differences provide a means for identifying polynomial functions from a table of values.

Knowing the relationship between the value of the constant difference and the leading coefficient of the function can also be useful.

Example 2

Determine the equation of the polynomial function that models the data found in the table.

x	y
-2	-29
-1	-26
0	-5
1	16
2	19
3	-14

Identifying Polynomial Functions from a Table of Values

Example 2

Solution

First, determine the degree of the polynomial function represented by the data by considering finite differences.

x	у	Δy	$\Delta^2 y$	$\Delta^3 y$
-2	-29	3	18	-18
-1	-26	21	0	-18
0	-5	21	-18	-18
1	16	3	-36	
2	19	-33		
3	-14			

Since the third differences are constant, the polynomial function is a cubic.

We can now find the equation using the general cubic function, $y = ax^3 + bx^2 + cx + d$, and determining the values of a, b, c, and d.

We can find the value of the leading coefficient, a, by using our constant difference formula.

From the table, $\Delta x = 1$. The constant difference $\Delta^3 y = -18$.

$$\Delta^3 y = a \times 3! \times (1)^3$$
$$-18 = a \times 3 \times 2 \times 1$$

Solving gives $a = -\frac{18}{6} = -3$.

Identifying Polynomial Functions from a Table of Values

Example 2

Solution

We can now use 3 of the points from the table to create 3 equations and solve for the values of b, c, and d. A good point to start with is the y-intercept (0, -5) which will provide the value of d.

$$-5 = -3(0)^3 + b(0)^2 + c(0) + d$$

Therefore, d = -5.

So far, we have $y = -3x^3 + bx^2 + cx - 5$.

Using (1, 16) gives

$$16 = -3(1)^3 + b(1)^2 + c(1) - 5$$
$$24 = b + c$$

Using (-1, -26) gives

$$-26 = -3(-1)^3 + b(-1)^2 + c(-1) - 5$$
$$-24 = b - c$$

Identifying Polynomial Functions from a Table of Values

Example 2

Solution

This gives a system of two equations with two unknowns.

$$24 = b + c \tag{1}$$

$$-24 = b - c \tag{2}$$

Adding the two equations, we obtain 2b = 0 and so, b = 0.

Subtracting the two equations, we obtain 2c = 48 and so, c = 24.

Therefore, $y = -3x^3 + 24x - 5$ is the equation of the function.

Summary

- For an n^{th} degree polynomial function, the n^{th} finite differences will be constant if the change in x, Δx , in the table is constant.
- If the change in x is 1 (i.e., $\Delta x = 1$) for a given table of values, then the value of the constant difference, $\Delta^n y$, is $a \times n!$, where a is the leading coefficient and $n! = n \times (n-1) \times (n-2) \times \cdots \times 2 \times 1$.
 - This concept is linked to derivatives, studied in calculus, where the n^{th} order derivative of an n^{th} degree polynomial is constant and the constant value of this derivative is given by $a \times n!$.
- Extension: If $\Delta x = p$, then the constant difference, $\Delta^n y$, will equal $p^n \times a \times n!$.