Graphs Of Reciprocal Trigonometric Functions

Introduction

To sketch the reciprocal trigonometric functions, we could use a table of values approach as we did with primary trigonometric ratios in a previous module.

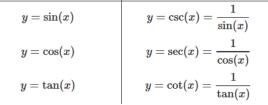
We also employed a table of values approach when we sketched $y = x^2$, $y = \sqrt{x}$, $y = 2^x$, y = |x|, and $y = \frac{1}{x}$, earlier in this course.

earlier in this course.

However, for the reciprocal function $y=rac{1}{x},$ we provided a second approach.

We will review this second approach and we will generalize it in this module to sketch the three reciprocal trigonometric functions.

Primary Trigonometric Functions Reciprocal Trigonometric Functions



Sketching the Reciprocal Function

Sketch the graph of $f(x) = \frac{1}{x}$ 1. Sketch the line g(x) = x. In general, given $f(x) = \frac{1}{g(x)}$, we graph the denominator function y = g(x). 2. When $g(x) = \pm 1$, $f(x) = \frac{1}{g(x)} = \pm 1$. In this example, this occurs when $x = \pm 1$. The points (1, 1) and (-1, -1) are on both g(x) = x and $f(x) = \frac{1}{x}$. Plot these two points. 3. If g(x) = 0, $f(x) = \frac{1}{g(x)}$ is undefined. Draw a vertical asymptote along the y-axis. 4. As values of x go from 1 to $+\infty$, g(x), the denominator function, approaches ∞ and so $f(x) = \frac{1}{g(x)}$ gets closer and closer to zero, the x-axis, from above.

Sketching the Reciprocal Function

Sketch the graph of $f(x) = \frac{1}{x}$

5. As values of x go from -1 to $-\infty$, g(x), the denominator

function, approaches $-\infty$ and so $f(x)=rac{1}{g(x)}$ gets closer and

closer to zero, the x-axis, from below.

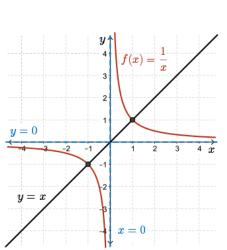
6. Draw in the horizontal asymptote along the x-axis.

7. As values of x start from -1 and approach 0 from the left, g(x), the denominator function, approaches 0 from below and so

$$f(x)=rac{1}{g(x)}$$
 approaches $-\infty$

8. As values of x start from 1 and approach 0 from the right, g(x), the denominator function, approaches 0 from above and so

$$f(x)=rac{1}{g(x)}$$
 approaches ∞ .



Sketching the Reciprocal Function

General steps for sketching $f(x)=rac{1}{g(x)}$

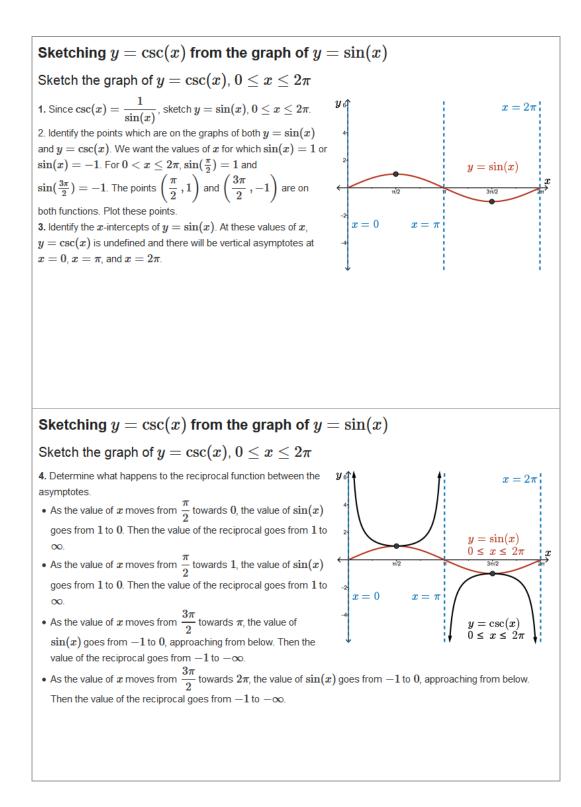
1. Sketch the function y = g(x).

2. Identify the values of x where g(x) = 1 or g(x) = -1. At these points f(x) = g(x). That is, these points are on both f(x) and g(x). These points are called **fixed points** or **static points**.

3. Identify the *x*-intercepts of g(x). At these points, f(x) is undefined. There will be vertical asymptotes for these values of *x*.

4. If required, determine what happens to the reciprocal function as x approaches the vertical asymptotes from the left and from the right.

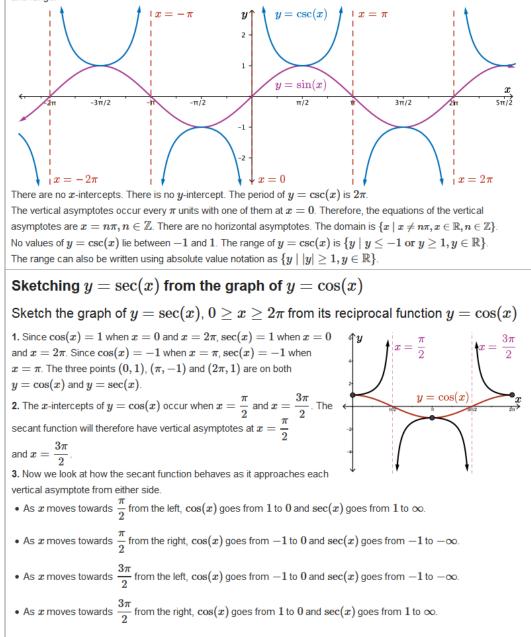
5. If required, determine the end behaviour of f(x).



Sketching $y = \csc(x)$ from the graph of $y = \sin(x)$

Properties of $y = \csc(x)$

It is straightforward to see that the cosecant function will be periodic and have the same period as the sine function. For the cosecant function, state the x and y-intercepts, the period and the equations of any asymptotes, and the domain and range.



Sketching $y = \sec(x)$ from the graph of $y = \cos(x)$

Properties of $y = \sec(x)$

For the secant function, state the x and y-intercepts, the period and the equations of any asymptotes, and the domain and range.

