Compound Angle Formulas

In This Module

 We will extend our knowledge of the fundamental trigonometric identities to include the compound angle identities shown here.

$$\sin(A+B) = \sin(A)\cos(B) + \cos(A)\sin(B)$$

$$\sin(A - B) = \sin(A)\cos(B) - \cos(A)\sin(B)$$

$$\cos(A+B) = \cos(A)\cos(B) - \sin(A)\sin(B)$$

$$\cos(A - B) = \cos(A)\cos(B) + \sin(A)\sin(B)$$

$$\tan(A+B) = \frac{\tan(A) + \tan(B)}{1 - \tan(A)\tan(B)}$$

$$\tan(A - B) = \frac{\tan(A) - \tan(B)}{1 + \tan(A)\tan(B)}$$

These identities involve the sum and difference of two angles and are often referred to as formulas as they provide a means of

- simplifying trigonometric expressions and proving other identities,
- determining exact values for angles related to the acute angles $\frac{\pi}{12}$ or $\frac{5\pi}{12}$ (15° or 75°), and
- · solving certain trigonometric equations.

Derivation

We will begin by deriving the formula for $\cos(A+B)$ using the unit circle

Consider the two points P and Q on the unit circle, where P is defined by $(\cos(\theta),\sin(\theta))$ for some angle $\theta,\theta>0$ and Q is given by $(\cos(-\beta),\sin(-\beta))$ for some angle β , $\beta>0$. The coordinates of Q can be simplified to $(\cos(\beta),-\sin(\beta))$.

The measure of $\angle POQ$, with O at the origin, is $\theta + \beta$. The length of the line segment PQ can be found using

$$|PQ| = \sqrt{\left(\Delta x
ight)^2 + \left(\Delta y
ight)^2}$$

Thus,

$$\begin{split} |PQ| &= \sqrt{(\cos(\theta) - \cos(\beta))^2 + (\sin(\theta) - (-\sin(\beta)))^2} \\ &= \sqrt{(\cos(\theta) - \cos(\beta))^2 + (\sin(\theta) + \sin(\beta))^2} \\ &= \sqrt{\cos^2(\theta) - 2\cos(\theta)\cos(\beta) + \cos^2(\beta) + \sin^2(\theta) + 2\sin(\theta)\sin(\beta) + \sin^2(\beta)} \\ &= \sqrt{\cos^2(\theta) + \sin^2(\theta) + \cos^2(\beta) + \sin^2(\beta) - 2\cos(\theta)\cos(\beta) + 2\sin(\theta)\sin(\beta)} \\ &= \sqrt{1 + 1 - 2\cos(\theta)\cos(\beta) + 2\sin(\theta)\sin(\beta)} \\ &= \sqrt{2 - 2\cos(\theta)\cos(\beta) + 2\sin(\theta)\sin(\beta)} \end{split}$$

Derivation

Now rotate the points P and Q counterclockwise about the origin by angle of β to obtain Q'(1,0) and

 $P'(\cos(\theta+\beta),\sin(\theta+\beta))$ on the unit circle, as shown in the diagram.

As a condition of the rotation, $\angle P'OQ' = \theta + \beta$ and |P'Q'| = |PQ|.

The length of $P^{\prime}Q^{\prime}$ is given by

$$|P'Q'| = \sqrt{(\cos(\theta + \beta) - 1)^2 + (\sin(\theta + \beta) - 0)^2}$$

$$= \sqrt{\cos^2(\theta + \beta) - 2\cos(\theta + \beta) + 1 + \sin^2(\theta + \beta)}$$

$$= \sqrt{\cos^2(\theta + \beta) + \sin^2(\theta + \beta) - 2\cos(\theta + \beta) + 1}$$

$$= \sqrt{1 - 2\cos(\theta + \beta) + 1}$$

$$= \sqrt{2 - 2\cos(\theta + \beta)}$$

Derivation

Since $|P^{\prime}Q^{\prime}|=|PQ|$, we have

$$\begin{split} \sqrt{2-2(\cos(\theta+\beta))} &= \sqrt{2-2\cos(\theta)\cos(\beta)} + 2\sin(\theta)\sin(\beta) \\ \frac{2-2(\cos(\theta+\beta))}{2-2(\cos(\theta+\beta))} &= \frac{2-2\cos(\theta)\cos(\beta)}{2-2\sin(\theta)\sin(\beta)} \\ &-2(\cos(\theta+\beta)) &= -2\cos(\theta)\cos(\theta) + 2\sin(\theta)\sin(\beta) \\ &\cos(\theta+\beta) &= \cos(\theta)\cos(\beta) - \sin(\theta)\sin(\beta) \end{split}$$

Angle Sum Formula for Cosine

$$\cos(A+B) = \cos(A)\cos(B) - \sin(A)\sin(B)$$

Derivation

To obtain the formula for $\cos(\theta - \beta)$, we can express it as $\cos(\theta + (-\beta))$ and apply the angle sum formula: $\cos(A+B) = \cos(A)\cos(B) - \sin(A)\sin(B)$

By setting $A = \theta$ and $B = -\beta$, we have

$$\begin{aligned} \cos(\theta - \beta) &= \cos(\theta + (-\beta)) \\ &= \cos(\theta)\cos(-\beta) - \sin(\theta)\sin(-\beta) \\ &= \cos(\theta)\cos(\beta) - \sin(\theta)(-\sin(\beta)) \\ &= \cos(\theta)\cos(\beta) + \sin(\theta)\sin(\beta) \\ \cos(\theta - \beta) &= \cos(\theta)\cos(\beta) + \sin(\theta)\sin(\beta) \end{aligned}$$

Angle Difference Formula for Cosine

$$\cos(A-B)=\cos(A)\cos(B)+\sin(A)\sin(B)$$

Angle Sum Formula for Cosine

$$\cos(A+B) = \cos(A)\cos(B) - \sin(A)\sin(B)$$

Derivation

To obtain the formula for $\sin(\theta + \beta)$ we can use the cofunction identities,

$$\sin(x) = \cos\left(\frac{\pi}{2} - x\right)$$
 and $\cos(x) = \sin\left(\frac{\pi}{2} - x\right)$

and apply the angle difference formula for cosine, $\cos(A-B)=\cos(A)\cos(B)+\sin(A)\sin(B)$.

$$\sin(\theta+\beta) = \cos\left(\frac{\pi}{2}-(\theta+\beta)\right)$$

$$= \cos\left(\left(\frac{\pi}{2}-\theta\right)-\beta\right)$$
 If we set $A=\frac{\pi}{2}-\theta$ and $B=\beta$, then
$$= \cos\left(\frac{\pi}{2}-\theta\right)\cos\left(\beta\right)+\sin\left(\frac{\pi}{2}-\theta\right)\sin\left(\beta\right)$$

$$= \sin(\theta)\cos(\beta)+\cos(\theta)\sin(\beta)$$

 $\sin(\theta + \beta) = \sin(\theta)\cos(\beta) + \cos(\theta)\sin(\beta)$

Angle Sum Formula for Sine

$$\sin(A+B) = \sin(A)\cos(B) + \cos(A)\sin(B)$$

Angle Difference Formula for Sine

$$\sin(A - B) = \sin(A)\cos(B) - \cos(A)\sin(B)$$

Derivation

To derive the angle sum formula for tangent, we begin by using the quotient identity.

$$\tan(A+B) = \frac{\sin(A+B)}{\cos(A+B)}$$

$$= \frac{\sin(A)\cos(B) + \cos(A)\sin(B)}{\cos(A)\cos(B) - \sin(A)\sin(B)}$$

$$= \frac{(\sin(A)\cos(B) + \cos(A)\sin(B)) \div \cos(A)\cos(B)}{(\cos(A)\cos(B) - \sin(A)\sin(B)) \div \cos(A)\cos(B)}$$

$$= \frac{\sin(A)\cos(B)}{\cos(A)\cos(B)} + \frac{\cos(A)\sin(B)}{\cos(A)\cos(B)}$$

$$= \frac{\cos(A)\cos(B)}{\cos(A)\cos(B)} - \frac{\sin(A)\sin(B)}{\cos(A)\cos(B)}$$

$$\tan(A+B) = \frac{\tan(A) + \tan(B)}{1 - \tan(A)\tan(B)}$$

Angle Sum Formula for Tangent

$$\tan(A+B) = \frac{\tan(A) + \tan(B)}{1 - \tan(A)\tan(B)}$$

Derivation

Angle Difference Formula for Tangent

$$\tan(A-B) = \frac{\tan(A) - \tan(B)}{1 + \tan(A)\tan(B)}$$

Summary

Angle Sum Formulas

$$\sin(A+B) = \sin(A)\cos(B) + \cos(A)\sin(B)$$
$$\cos(A+B) = \cos(A)\cos(B) - \sin(A)\sin(B)$$
$$\tan(A) + \tan(B)$$

$$\tan(A+B) = \frac{\tan(A) + \tan(B)}{1 - \tan(A)\tan(B)}$$

Angle Difference Formulas

$$\sin(A - B) = \sin(A)\cos(B) - \cos(A)\sin(B)$$
$$\cos(A - B) = \cos(A)\cos(B) + \sin(A)\sin(B)$$
$$\tan(A - B) = \frac{\tan(A) - \tan(B)}{1 + \tan(A)\tan(B)}$$

Example 1

Determine an equivalent trigonometric expression using an appropriate compound angle formula.

a.
$$\sin\!\left(x-rac{\pi}{2}
ight)$$

b.
$$\cos\left(x+\frac{3\pi}{2}\right)$$

$$\mathsf{b.} \cos\!\left(x + \frac{3\pi}{2}\right) \qquad \mathsf{c.} \tan\!\left(x + \frac{5\pi}{6}\right)$$

Solution

a. Using the angle difference formula,

$$\sin(A-B)=\sin(A)\cos(B)-\cos(A)\sin(B)$$

By setting
$$A=x$$
 and $B=rac{\pi}{2}$, we have

Previously, we may have argued that

$$\sin\left(x - \frac{\pi}{2}\right) = \sin(x)\cos\left(\frac{\pi}{2}\right) - \cos(x)\sin\left(\frac{\pi}{2}\right) \quad \sin\left(x - \frac{\pi}{2}\right) = \sin\left(-\left(\frac{\pi}{2} - x\right)\right)$$

$$= \sin(x)(0) - \cos(x)(1)$$

$$= -\cos(x)$$

$$= -\cos(x)$$

Examples

Example 1

Determine an equivalent trigonometric expression using an appropriate compound angle formula.

a.
$$\sin\left(x-\frac{\pi}{2}\right)$$

b.
$$\cos\!\left(x+\frac{3\pi}{2}\right)$$
 c. $\tan\!\left(x+\frac{5\pi}{6}\right)$

c.
$$\tan\left(x+\frac{5\pi}{6}\right)$$

Solution

b. Using the angle sum formula

 $\cos(A+B) = \cos(A)\cos(B) - \sin(A)\sin(B)$

To verify this equivalence graphically, translate

 $y=\cos(x)$ to the left $rac{3\pi}{2}$ units. The image curve is the sine curve.

$$\cos\left(x + \frac{3\pi}{2}\right) = \cos(x)\cos\left(\frac{3\pi}{2}\right) - \sin(x)\sin\left(\frac{3\pi}{2}\right)$$
$$= \cos(x)(0) - \sin(x)(-1)$$
$$= \sin(x)$$

Example 1

Determine an equivalent trigonometric expression using an appropriate compound angle formula.

a.
$$\sin\!\left(x-rac{\pi}{2}
ight)$$

b.
$$\cos\!\left(x+\frac{3\pi}{2}\right)$$
 c. $\tan\!\left(x+\frac{5\pi}{6}\right)$

c.
$$\tan\left(x+\frac{5\pi}{6}\right)$$

Solution

c. Using
$$an(A+B)=rac{ an(A)+ an(B)}{1- an(A) an(B)}$$
 where $A=x$ and $B=rac{5\pi}{6}$, we have

$$\tan\left(x + \frac{5\pi}{6}\right) = \frac{\tan(x) + \tan\left(\frac{5\pi}{6}\right)}{1 - \tan(x)\tan\left(\frac{5\pi}{6}\right)}$$

$$= \frac{\tan(x) - \frac{1}{\sqrt{3}}}{1 - \tan(x)\left(-\frac{1}{\sqrt{3}}\right)}$$

$$= \frac{\left(\tan(x) - \frac{1}{\sqrt{3}}\right)}{\left(1 + \frac{\tan(x)}{\sqrt{3}}\right)} \times \frac{\sqrt{3}}{\sqrt{3}}$$

$$= \frac{\sqrt{3}\tan(x) - 1}{\sqrt{3} + \tan(x)}$$

Examples

Example 2

Express as a single trigonometric ratio using an appropriate compound angle formula.

a.
$$\cos(\theta)\cos(2\theta)-\sin(\theta)\sin(2\theta)$$

b.
$$\dfrac{ an\left(\frac{\pi}{3}\right)- an\left(\frac{3\pi}{4}\right)}{1+ an\left(\frac{\pi}{3}\right) an\left(\frac{3\pi}{4}\right)}$$
 c. $\dfrac{1}{2}\cos(x)+\dfrac{\sqrt{3}}{2}\sin(x)$

c.
$$\frac{1}{2}\cos(x) + \frac{\sqrt{3}}{2}\sin(x)$$

Solution

a. Using the sum formula for cosine,

$$\cos(A+B) = \cos(A)\cos(B) - \sin(A)\sin(B)$$

where A= heta and B=2 heta, we have

$$\cos(\theta)\cos(2\theta) - \sin(\theta)\sin(2\theta) = \cos(\theta + 2\theta)$$

= $\cos(3\theta)$

b. Using the difference formula for tangent,

$$\tan(A - B) = \frac{\tan(A) - \tan(B)}{1 + \tan(A)\tan(B)}$$

where $A=rac{\pi}{3}$ and $B=rac{3\pi}{4}$, we have

$$\frac{\tan\left(\frac{\pi}{3}\right) - \tan\left(\frac{3\pi}{4}\right)}{1 + \tan\left(\frac{\pi}{3}\right)\tan\left(\frac{3\pi}{4}\right)} = \tan\left(\frac{\pi}{3} - \frac{3\pi}{4}\right)$$

$$= \tan\left(\frac{4\pi}{12} - \frac{9\pi}{12}\right)$$

$$= \tan\left(-\frac{5\pi}{12}\right)$$

$$= -\tan\left(\frac{5\pi}{12}\right)$$

Example 2

Express as a single trigonometric ratio using an appropriate compound angle formula

a.
$$\cos(\theta)\cos(2\theta)-\sin(\theta)\sin(2\theta)$$

$$\mathsf{b.} \ \frac{\tan\left(\frac{\pi}{3}\right) - \tan\left(\frac{3\pi}{4}\right)}{1 + \tan\left(\frac{\pi}{3}\right)\tan\left(\frac{3\pi}{4}\right)} \qquad \mathsf{c.} \ \frac{1}{2}\cos(x) + \frac{\sqrt{3}}{2}\sin(x)$$

c.
$$\frac{1}{2}\cos(x) + \frac{\sqrt{3}}{2}\sin(x)$$

c. Since
$$\sin\!\left(\frac{\pi}{6}\right) = \frac{1}{2}$$
 and $\cos\!\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$ then,

$$egin{aligned} rac{1}{2}\cos(x) + rac{\sqrt{3}}{2}\sin(x) &= \sin\!\left(rac{\pi}{6}
ight)\cos(x) + \cos\!\left(rac{\pi}{6}
ight)\sin(x) \ &= \sin\!\left(rac{\pi}{6} + x
ight) \end{aligned}$$

Examples

Example 2

Express as a single trigonometric ratio using an appropriate compound angle formula.

a.
$$\cos(\theta)\cos(2\theta)-\sin(\theta)\sin(2\theta)$$

$$\mathsf{b.} \ \frac{\tan\left(\frac{\pi}{3}\right) - \tan\left(\frac{3\pi}{4}\right)}{1 + \tan\left(\frac{\pi}{3}\right)\tan\left(\frac{3\pi}{4}\right)} \qquad \mathsf{c.} \ \frac{1}{2}\cos(x) + \frac{\sqrt{3}}{2}\sin(x)$$

c.
$$\frac{1}{2}\cos(x) + \frac{\sqrt{3}}{2}\sin(x)$$

Solution

c. An alternate expression can be obtained using
$$\sin\!\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}$$
 and $\cos\!\left(\frac{\pi}{3}\right) = \frac{1}{2}$.

$$egin{aligned} rac{1}{2}\cos(x) + rac{\sqrt{3}}{2}\sin(x) &= \cos\left(rac{\pi}{3}
ight)\cos(x) + \sin\left(rac{\pi}{3}
ight)\sin(x) \ &= \cos\left(rac{\pi}{3} - x
ight) \end{aligned}$$

This implies that
$$\sin\!\left(\frac{\pi}{6}+x\right)=\cos\!\left(\frac{\pi}{3}-x\right)$$
 .

Example 2

Express as a single trigonometric ratio using an appropriate compound angle formula.

a.
$$\cos(\theta)\cos(2\theta)-\sin(\theta)\sin(2\theta)$$

$$\mathsf{b.} \ \frac{\tan\left(\frac{\pi}{3}\right) - \tan\left(\frac{3\pi}{4}\right)}{1 + \tan\left(\frac{\pi}{3}\right)\tan\left(\frac{3\pi}{4}\right)} \qquad \mathsf{c.} \ \frac{1}{2}\cos(x) + \frac{\sqrt{3}}{2}\sin(x)$$

c.
$$\frac{1}{2}\cos(x) + \frac{\sqrt{3}}{2}\sin(x)$$

To verify
$$\sin\left(\frac{\pi}{6}+x\right)=\cos\left(\frac{\pi}{3}-x\right)$$
 graphically, let $g(x)=\cos\left(-\left(x-\frac{\pi}{3}\right)\right)$ $f(x)=\sin\left(\frac{\pi}{6}+x\right)$ and $g(x)=\cos\left(\frac{\pi}{3}-x\right)$

The graph of $f(x)=\sin\!\left(x+rac{\pi}{6}
ight)$ can be obtained by

translating the graph of $y=\sin(x)$ to the left $\frac{\pi}{6}$.

The graph of $g(x)=\cos\!\left(-\left(x-rac{\pi}{3}
ight)
ight)$ can be obtained by reflecting the graph of $y=\cos(x)$ in the y-axis, and translating the curve to the right $\frac{\pi}{2}$

Examples

We can use compound angle formulas to determine the exact value of any angle corresponding to the reference angles 15° and 75° , or in radians, $\frac{\pi}{12}$ and $\frac{5\pi}{12}$

Example 3

Determine the exact value of each using a compound angle formula.

$$\mathbf{a}.\sin\!\left(\frac{13\pi}{12}\right)$$

b. $\cos(195^{\circ})$

Solution

$$a. \sin\!\left(\frac{13\pi}{12}\right)$$

To determine the exact value of $\sin\left(\frac{13\pi}{12}\right)$, we express $\frac{13\pi}{12}$ as a sum or difference of two angles corresponding to the related acute angles $\frac{\pi}{6}$, $\frac{\pi}{4}$, or $\frac{\pi}{3}$. For example,

$$\frac{13\pi}{12} = \frac{9\pi}{12} + \frac{4\pi}{12}$$
$$= \frac{3\pi}{4} + \frac{\pi}{3}$$

$$\mathrm{So}, \sin\!\left(\frac{13\pi}{12}\right) = \sin\!\left(\frac{3\pi}{4} + \frac{\pi}{3}\right).$$

We can use compound angle formulas to determine the exact value of any angle corresponding to the reference angles 15° and 75° , or in radians, $\frac{\pi}{12}$ and $\frac{5\pi}{12}$.

Example 3

Determine the exact value of each using a compound angle formula.

a.
$$\sin\!\left(\frac{13\pi}{12}\right)$$
 b. $\cos\!\left(195^\circ\right)$

Solution

$$\begin{split} \sin\!\left(\frac{13\pi}{12}\right) &= \sin\!\left(\frac{3\pi}{4} + \frac{\pi}{3}\right) & \text{Therefore, the exact value of } \sin\!\left(\frac{13\pi}{12}\right) \text{ is} \\ &= \sin\!\left(\frac{3\pi}{4}\right) \cos\!\left(\frac{\pi}{3}\right) + \cos\!\left(\frac{3\pi}{4}\right) \sin\!\left(\frac{\pi}{3}\right) & \frac{\sqrt{2} - \sqrt{6}}{4} \\ &= \left(\frac{1}{\sqrt{2}}\right)\!\left(\frac{1}{2}\right) + \left(-\frac{1}{\sqrt{2}}\right)\!\left(\frac{\sqrt{3}}{2}\right) \\ &= \frac{1 - \sqrt{3}}{2\sqrt{2}} \\ &= \frac{1 - \sqrt{3}}{2\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2} - \sqrt{6}}{4} \end{split}$$

Examples

We can use compound angle formulas to determine the exact value of any angle corresponding to the reference angles 15° and 75° , or in radians, $\frac{\pi}{12}$ and $\frac{5\pi}{12}$.

Example 3

Determine the exact value of each using a compound angle formula.

a.
$$\sin\!\left(\frac{13\pi}{12}\right)$$
 b. $\cos(195^\circ)$

Solution

b. $\cos(195^{\circ})$

$$\begin{array}{lll} \text{Since } 195^\circ = 225^\circ - 30^\circ & \text{Since } 195^\circ = 135^\circ + 60^\circ \\ \cos(195^\circ) = \cos(225^\circ - 30^\circ) & \cos(195^\circ) = \cos(135^\circ + 60^\circ) \\ & = \cos(225^\circ)\cos(30^\circ) + \sin(225^\circ)\sin(30^\circ) & = \cos(135^\circ)\cos(60^\circ) - \sin(135^\circ)\sin(60^\circ) \\ & = \left(-\frac{1}{\sqrt{2}}\right)\left(\frac{\sqrt{3}}{2}\right) + \left(-\frac{1}{\sqrt{2}}\right)\left(\frac{1}{2}\right) & = \left(-\frac{1}{\sqrt{2}}\right)\left(\frac{1}{2}\right) - \left(\frac{1}{\sqrt{2}}\right)\left(\frac{\sqrt{3}}{2}\right) \\ & = \frac{-\sqrt{3} - 1}{2\sqrt{2}} & = \frac{-1 - \sqrt{3}}{2\sqrt{2}} \\ & = \frac{-\sqrt{6} - \sqrt{2}}{4} & = \frac{-\sqrt{2} - \sqrt{6}}{4} \end{array}$$

Example 4

Prove that $\cos(x+y)\cos(x-y) = \cos^2(x) - \sin^2(y)$

Solution

L.S. =
$$\cos(x + y)\cos(x - y)$$

= $\left(\cos(x)\cos(y) - \sin(x)\sin(y)\right)\left(\cos(x)\cos(y) + \sin(x)\sin(y)\right)$
= $\left(\cos(x)\cos(y)\right)^2 + \frac{\cos(x)\cos(y)\sin(x)\sin(y)}{\sin(x)\sin(y)} - \frac{\sin(x)\sin(y)\cos(x)\cos(y)}{\sin(x)\sin(y)} - \left(\sin(x)\sin(y)\right)^2$
= $\left(\cos(x)\cos(y)\right)^2 - \left(\sin(x)\sin(y)\right)^2$
= $\cos^2(x)\cos^2(y) - \sin^2(x)\sin^2(y)$
= $\cos^2(x)\left(1 - \sin^2(y)\right) - \left(1 - \cos^2(x)\right)\sin^2(y)$
= $\cos^2(x) - \cos^2(x)\sin^2(y) - \sin^2(y) + \cos^2(x)\sin^2(y)$
= $\cos^2(x) - \sin^2(y)$
= R.S.

Therefore, $\cos(x+y)\cos(x-y) = \cos^2(x) - \sin^2(y)$

Examples

Example 5

Solve for
$$x$$
 in $\dfrac{1}{\sin\!\left(x-\dfrac{\pi}{6}\right)-\sin\!\left(x+\dfrac{\pi}{6}\right)}=\sqrt{2},$ where $0\leq x\leq 2\pi.$

Solution

$$\frac{1}{\sin\left(x - \frac{\pi}{6}\right) - \sin\left(x + \frac{\pi}{6}\right)} = \sqrt{2}$$

$$\frac{1}{\left(\sin(x)\cos\left(\frac{\pi}{6}\right) - \cos(x)\sin\left(\frac{\pi}{6}\right)\right) - \left(\sin(x)\cos\left(\frac{\pi}{6}\right) + \cos(x)\sin\left(\frac{\pi}{6}\right)\right)} = \sqrt{2}$$

$$\frac{1}{\sin(x)\cos\left(\frac{\pi}{6}\right) - \cos(x)\sin\left(\frac{\pi}{6}\right) - \sin(x)\cos\left(\frac{\pi}{6}\right) - \cos(x)\sin\left(\frac{\pi}{6}\right)} = \sqrt{2}$$

$$\frac{1}{-\cos(x)\sin\left(\frac{\pi}{6}\right) - \cos(x)\sin\left(\frac{\pi}{6}\right)} = \sqrt{2}$$

$$\frac{1}{-2\cos(x)\sin\left(\frac{\pi}{6}\right)} = \sqrt{2}$$

Example 5

Solve for
$$x$$
 in $\dfrac{1}{\sin\left(x-\dfrac{\pi}{6}\right)-\sin\left(x+\dfrac{\pi}{6}\right)}=\sqrt{2},$ where $0\leq x\leq 2\pi.$

Solution

$$\begin{split} \frac{1}{-2\cos(x)\sin\left(\frac{\pi}{6}\right)} &= \sqrt{2} \\ \frac{1}{-2\cos(x)\left(\frac{1}{2}\right)} &= \sqrt{2} \\ \frac{1}{-\cos(x)} &= \sqrt{2} \\ -\sqrt{2}\cos(x) &= 1 \\ \cos(x) &= -\frac{1}{\sqrt{2}} \end{split}$$
 Therefore, $x = \frac{3\pi}{4}$ or $\frac{5\pi}{4}$.

Examples

Example 6

Solve $\sqrt{3}\sin(x)+3\cos(x)=-\sqrt{6}, 0\leq x\leq 2\pi$ by first expressing $\sqrt{3}\sin(x)+3\cos(x)$ in the form $a\sin(x-h)$.

Solution

First, find a value for a and h such that $\sqrt{3}\sin(x) + 3\cos(x) = a\sin(x-h)$.

$$\begin{split} \sqrt{3}\sin(x) + 3\cos(x) &= a\sin(x - h) \\ &= a\Big(\sin(x)\cos(h) - \cos(x)\sin(h)\Big) \\ &= a\sin(x)\cos(h) - a\cos(x)\sin(h) \\ \sqrt{3}\sin(x) + 3\cos(x) &= a\sin(x)\cos(h) - a\cos(x)\sin(h) \end{split}$$

Therefore,

$$a\cos(h) = \sqrt{3}$$

$$-a\sin(h) = 3$$
(1)

Example 6

Solve $\sqrt{3}\sin(x)+3\cos(x)=-\sqrt{6}, 0\leq x\leq 2\pi$ by first expressing $\sqrt{3}\sin(x)+3\cos(x)$ in the form $a\sin(x-h)$.

Solution

We have established two equations to solve for the two unknowns a and h,

$$a\cos(h) = \sqrt{3} \tag{1}$$

$$-a\sin(h) = 3\tag{2}$$

Dividing equation (2) by equation (1),

$$\frac{-a\sin(h)}{a\cos(h)} = \frac{3}{\sqrt{3}}$$
$$-\tan(h) = \frac{3}{\sqrt{3}}$$
$$\tan(h) = -\frac{3}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$$

and therefore, $h=rac{2\pi}{3}$ is one possible solution.

Examples

Example 6

Solve $\sqrt{3}\sin(x)+3\cos(x)=-\sqrt{6}, 0\leq x\leq 2\pi$ by first expressing $\sqrt{3}\sin(x)+3\cos(x)$ in the form $a\sin(x-h)$.

Solution

We need only one value for h; substituting $h=rac{2\pi}{3}$ into (1),

$$a\cos\!\left(\frac{2\pi}{3}\right)=\sqrt{3}$$

$$a\bigg(\!-\frac{1}{2}\bigg)=\sqrt{3}$$

$$a=-2\sqrt{3}$$

Therefore, $\sqrt{3}\sin(x)+3\cos(x)=-2\sqrt{3}\sin\!\left(x-rac{2\pi}{3}
ight)$.

Substituting this form into $\sqrt{3}\sin(x) + 3\cos(x) = -\sqrt{6}$, we have

$$-2\sqrt{3}\sin\!\left(x-\frac{2\pi}{3}\right)=-\sqrt{6}$$

Example 6

Solve $\sqrt{3}\sin(x)+3\cos(x)=-\sqrt{6}, 0\leq x\leq 2\pi$ by first expressing $\sqrt{3}\sin(x)+3\cos(x)$ in the form $a\sin(x-h)$.

Solution

$$-2\sqrt{3}\sin\!\left(x-\frac{2\pi}{3}\right)=-\sqrt{6}$$

We are now ready to solve for $oldsymbol{x}$ by first isolating

$$\sin\left(x-\frac{2\pi}{3}\right)$$
.

$$\sin\left(x - \frac{2\pi}{3}\right) = -\frac{\sqrt{6}}{-2\sqrt{3}}$$

$$\sin\!\left(x-rac{2\pi}{3}
ight) = rac{\sqrt{2}}{2} ext{ or } rac{1}{\sqrt{2}}$$

$$x-\frac{2\pi}{3}=\frac{\pi}{4}\,,\frac{3\pi}{4}$$
 All possible solutions for $x-\frac{2\pi}{3}$ are given by $\frac{\pi}{4}+2\pi n$

and $rac{3\pi}{4} + 2\pi n$ where $n \in \mathbb{Z}$.

Examples

Example 6

Solve $\sqrt{3}\sin(x)+3\cos(x)=-\sqrt{6}, 0\leq x\leq 2\pi$ by first expressing $\sqrt{3}\sin(x)+3\cos(x)$ in the form $a\sin(x-h)$.

Solution

For $0 \leq x \leq 2\pi$, we have

$$x - \frac{2\pi}{3} = \frac{\pi}{4}, \frac{3\pi}{4}$$

$$x = \frac{\pi}{4} + \frac{2\pi}{3}, \frac{3\pi}{4} + \frac{2\pi}{3}$$

$$x = \frac{3\pi}{12} + \frac{8\pi}{12}, \frac{9\pi}{12} + \frac{8\pi}{12}$$

$$x = \frac{11\pi}{12}, \frac{17\pi}{12}$$

Therefore, the solutions to $\sqrt{3}\sin(x)+3\cos(x)=-\sqrt{6}$, for $0\leq x\leq 2\pi$ are $\frac{11\pi}{12}$, $\frac{17\pi}{12}$

Example 6

Solve $\sqrt{3}\sin(x)+3\cos(x)=-\sqrt{6}, 0\leq x\leq 2\pi$ by first expressing $\sqrt{3}\sin(x)+3\cos(x)$ in the form $a\sin(x-h)$.

Solution

We were able to solve $\sqrt{3}\sin(x) + 3\cos(x) = -\sqrt{6}$ by first determining an equivalent expression for $\sqrt{3}\sin(x) + 3\cos(x)$ using an appropriate compound angle formula.

We can verify this equivalence and the solutions to the equation using graphing technology.

The graph of $y=\sqrt{3}\sin(x)+3\cos(x)$ is the same as the graph of $y=-2\sqrt{3}\sin\left(x-\frac{2\pi}{3}\right)$ and this graph

intersects the line $y=-\sqrt{6}$ at approximately 2.88 and 4.45, or $\frac{11\pi}{12}$ and $\frac{17\pi}{12}$.

Summary

Angle Sum Formulas

$$\sin(A+B) = \sin(A)\cos(B) + \cos(A)\sin(B)$$

$$\cos(A+B) = \cos(A)\cos(B) - \sin(A)\sin(B)$$

$$\tan(A+B) = \frac{\tan(A) + \tan(B)}{1 - \tan(A)\tan(B)}$$

Angle Difference Formulas

$$\sin(A - B) = \sin(A)\cos(B) - \cos(A)\sin(B)$$
$$\cos(A - B) = \cos(A)\cos(B) + \sin(A)\sin(B)$$
$$\tan(A - B) = \frac{\tan(A) - \tan(B)}{1 + \tan(A)\tan(B)}$$

Compound angle formulas can be used to

- · simplify trigonometric expressions and determine equivalent forms,
- · prove identities,
- ullet find exact values for angles related to the acute angles $\dfrac{\pi}{12}$ and $\dfrac{5\pi}{12}$, and
- · solve trigonometric equations.