Compound Angle Formulas

In This Module

- We will extend our knowledge of the fundamental trigonometric identities to include the compound angle identities shown here

$$
\begin{aligned}
\sin (A+B) & =\sin (A) \cos (B)+\cos (A) \sin (B) \\
\sin (A-B) & =\sin (A) \cos (B)-\cos (A) \sin (B) \\
\cos (A+B) & =\cos (A) \cos (B)-\sin (A) \sin (B) \\
\cos (A-B) & =\cos (A) \cos (B)+\sin (A) \sin (B) \\
\tan (A+B) & =\frac{\tan (A)+\tan (B)}{1-\tan (A) \tan (B)} \\
\tan (A-B) & =\frac{\tan (A)-\tan (B)}{1+\tan (A) \tan (B)}
\end{aligned}
$$

These identities involve the sum and difference of two angles and are often referred to as formulas as they provide a means of

- simplifying trigonometric expressions and proving other identities,
- determining exact values for angles related to the acute angles $\frac{\pi}{12}$ or $\frac{5 \pi}{12}$ (15° or 75°), and
- solving certain trigonometric equations.

Derivation

We will begin by deriving the formula for $\cos (A+B)$ using the unit circle

Consider the two points P and Q on the unit circle, where P is defined by $(\cos (\theta), \sin (\theta))$ for some angle $\theta, \theta>0$ and Q is given by $(\cos (-\beta), \sin (-\beta))$ for some angle β, $\beta>0$. The coordinates of Q can be simplified to $(\cos (\beta),-\sin (\beta))$
The measure of $\angle P O Q$, with O at the origin, is $\theta+\beta$. The length of the line segment $P Q$ can be found using

$$
|P Q|=\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}
$$

Thus,

$$
\begin{aligned}
|P Q| & =\sqrt{(\cos (\theta)-\cos (\beta))^{2}+(\sin (\theta)-(-\sin (\beta)))^{2}} \\
& =\sqrt{(\cos (\theta)-\cos (\beta))^{2}+(\sin (\theta)+\sin (\beta))^{2}} \\
& =\sqrt{\cos ^{2}(\theta)-2 \cos (\theta) \cos (\beta)+\cos ^{2}(\beta)+\sin ^{2}(\theta)+2 \sin (\theta) \sin (\beta)+\sin ^{2}(\beta)} \\
& =\sqrt{\cos ^{2}(\theta)+\sin ^{2}(\theta)+\cos ^{2}(\beta)+\sin ^{2}(\beta)-2 \cos (\theta) \cos (\beta)+2 \sin (\theta) \sin (\beta)} \\
& =\sqrt{1+1-2 \cos (\theta) \cos (\beta)+2 \sin (\theta) \sin (\beta)} \\
& =\sqrt{2-2 \cos (\theta) \cos (\beta)+2 \sin (\theta) \sin (\beta)}
\end{aligned}
$$

Derivation

Now rotate the points P and Q counterclockwise about the origin by angle of β to obtain $Q^{\prime}(1,0)$ and
$P^{\prime}(\cos (\theta+\beta), \sin (\theta+\beta))$ on the unit circle, as shown in the diagram.
As a condition of the rotation, $\angle P^{\prime} O Q^{\prime}=\theta+\beta$ and
$\left|P^{\prime} Q^{\prime}\right|=|P Q|$
The length of $P^{\prime} Q^{\prime}$ is given by

$$
\begin{aligned}
\left|P^{\prime} Q^{\prime}\right| & =\sqrt{(\cos (\theta+\beta)-1)^{2}+(\sin (\theta+\beta)-0)^{2}} \\
& =\sqrt{\cos ^{2}(\theta+\beta)-2 \cos (\theta+\beta)+1+\sin ^{2}(\theta+\beta)} \\
& =\sqrt{\cos ^{2}(\theta+\beta)+\sin ^{2}(\theta+\beta)-2 \cos (\theta+\beta)+1} \\
& =\sqrt{1-2 \cos (\theta+\beta)+1} \\
& =\sqrt{2-2 \cos (\theta+\beta)}
\end{aligned}
$$

Derivation

Since $\left|P^{\prime} Q^{\prime}\right|=|P Q|$, we have

$$
\begin{aligned}
\sqrt{2-2(\cos (\theta+\beta))} & =\sqrt{2-2 \cos (\theta) \cos (\beta)+2 \sin (\theta) \sin (\beta)} \\
2-2(\cos (\theta+\beta)) & =2-2 \cos (\theta) \cos (\beta)+2 \sin (\theta) \sin (\beta) \\
-2(\cos (\theta+\beta)) & =-2 \cos (\theta) \cos (\theta)+2 \sin (\theta) \sin (\beta) \\
\cos (\theta+\beta) & =\cos (\theta) \cos (\beta)-\sin (\theta) \sin (\beta)
\end{aligned}
$$

Angle Sum Formula for Cosine

$\cos (A+B)=\cos (A) \cos (B)-\sin (A) \sin (B)$

Derivation

To obtain the formula for $\cos (\theta-\beta)$, we can express it as $\cos (\theta+(-\beta))$ and apply the angle sum formula: $\cos (A+B)=\cos (A) \cos (B)-\sin (A) \sin (B)$
By setting $A=\theta$ and $B=-\beta$, we have

$$
\begin{aligned}
\cos (\theta-\beta) & =\cos (\theta+(-\beta)) \\
& =\cos (\theta) \cos (-\beta)-\sin (\theta) \sin (-\beta) \\
& =\cos (\theta) \cos (\beta)-\sin (\theta)(-\sin (\beta)) \\
& =\cos (\theta) \cos (\beta)+\sin (\theta) \sin (\beta) \\
\cos (\theta-\beta) & =\cos (\theta) \cos (\beta)+\sin (\theta) \sin (\beta)
\end{aligned}
$$

Angle Difference Formula for Cosine

$\cos (A-B)=\cos (A) \cos (B)+\sin (A) \sin (B)$

Angle Sum Formula for Cosine

$\cos (A+B)=\cos (A) \cos (B)-\sin (A) \sin (B)$

Derivation

To obtain the formula for $\sin (\theta+\beta)$ we can use the cofunction identities,

$$
\sin (x)=\cos \left(\frac{\pi}{2}-x\right) \text { and } \cos (x)=\sin \left(\frac{\pi}{2}-x\right)
$$

and apply the angle difference formula for cosine, $\cos (A-B)=\cos (A) \cos (B)+\sin (A) \sin (B)$

$$
\begin{aligned}
\sin (\theta+\beta) & =\cos \left(\frac{\pi}{2}-(\theta+\beta)\right) \\
& =\cos \left(\left(\frac{\pi}{2}-\theta\right)-\beta\right) \\
& =\cos \left(\frac{\pi}{2}-\theta\right) \cos (\beta)+\sin \left(\frac{\pi}{2}-\theta\right) \sin (\beta) \\
& =\sin (\theta) \cos (\beta)+\cos (\theta) \sin (\beta) \\
\sin (\theta+\beta) & =\sin (\theta) \cos (\beta)+\cos (\theta) \sin (\beta)
\end{aligned}
$$

If we set $A=\frac{\pi}{2}-\theta$ and $B=\beta$, then

Angle Sum Formula for Sine

$\sin (A+B)=\sin (A) \cos (B)+\cos (A) \sin (B)$

Angle Difference Formula for Sine

$\sin (A-B)=\sin (A) \cos (B)-\cos (A) \sin (B)$

Derivation

To derive the angle sum formula for tangent, we begin by using the quotient identity.

$$
\begin{aligned}
& \tan (A+B)= \frac{\sin (A+B)}{\cos (A+B)} \\
&=\frac{\sin (A) \cos (B)+\cos (A) \sin (B)}{\cos (A) \cos (B)-\sin (A) \sin (B)} \\
&=\frac{(\sin (A) \cos (B)+\cos (A) \sin (B)) \div \cos (A) \cos (B)}{(\cos (A) \cos (B)-\sin (A) \sin (B)) \div \cos (A) \cos (B)} \\
&=\frac{\frac{\sin (A) \cos (B)}{\cos (A) \cos (B)}+\frac{\cos (A) \sin (B)}{\frac{\cos (A) \cos (B) \cos (B)}{\cos (A) \cos (B)}}-\frac{\sin (A) \sin (B)}{\cos (A) \cos (B)}}{\frac{\tan (A)+\tan (B)}{1-\tan (A) \tan (B)}} \\
& \tan (A+B)
\end{aligned}
$$

Angle Sum Formula for Tangent
$\tan (A+B)=\frac{\tan (A)+\tan (B)}{1-\tan (A) \tan (B)}$

Derivation

Angle Difference Formula for Tangent

$\tan (A-B)=\frac{\tan (A)-\tan (B)}{1+\tan (A) \tan (B)}$

Summary

$$
\begin{aligned}
& \text { Angle Sum Formulas } \\
& \begin{array}{l}
\sin (A+B)=\sin (A) \cos (B)+\cos (A) \sin (B) \\
\cos (A+B)=\cos (A) \cos (B)-\sin (A) \sin (B) \\
\tan (A+B)=\frac{\tan (A)+\tan (B)}{1-\tan (A) \tan (B)}
\end{array}
\end{aligned}
$$

Angle Difference Formulas

$$
\sin (A-B)=\sin (A) \cos (B)-\cos (A) \sin (B)
$$

$$
\cos (A-B)=\cos (A) \cos (B)+\sin (A) \sin (B)
$$

$$
\tan (A-B)=\frac{\tan (A)-\tan (B)}{1+\tan (A) \tan (B)}
$$

Examples

Example 1

Determine an equivalent trigonometric expression using an appropriate compound angle formula
a. $\sin \left(x-\frac{\pi}{2}\right)$
b. $\cos \left(x+\frac{3 \pi}{2}\right)$
c. $\tan \left(x+\frac{5 \pi}{6}\right)$

Solution

a. Using the angle difference formula,

$$
\sin (A-B)=\sin (A) \cos (B)-\cos (A) \sin (B)
$$

By setting $A=x$ and $B=\frac{\pi}{2}$, we have
Previously, we may have argued that

$$
\begin{aligned}
\sin \left(x-\frac{\pi}{2}\right) & =\sin (x) \cos \left(\frac{\pi}{2}\right)-\cos (x) \sin \left(\frac{\pi}{2}\right) \\
& =\sin (x)(0)-\cos (x)(1) \\
& =-\cos (x)
\end{aligned}
$$

$$
\sin \left(x-\frac{\pi}{2}\right)=\sin \left(-\left(\frac{\pi}{2}-x\right)\right)
$$

$$
=-\sin \left(\frac{\pi}{2}-x\right)
$$

$$
=-\cos (x)
$$

Examples

Example 1

Determine an equivalent trigonometric expression using an appropriate compound angle formula.
a. $\sin \left(x-\frac{\pi}{2}\right)$
b. $\cos \left(x+\frac{3 \pi}{2}\right)$
c. $\tan \left(x+\frac{5 \pi}{6}\right)$

Solution

b. Using the angle sum formula
$\cos (A+B)=\cos (A) \cos (B)-\sin (A) \sin (B)$
we have

$$
\begin{aligned}
\cos \left(x+\frac{3 \pi}{2}\right) & =\cos (x) \cos \left(\frac{3 \pi}{2}\right)-\sin (x) \sin \left(\frac{3 \pi}{2}\right) \\
& =\cos (x)(0)-\sin (x)(-1) \\
& =\sin (x)
\end{aligned}
$$

To verify this equivalence graphically, translate
$y=\cos (x)$ to the left $\frac{3 \pi}{2}$ units. The image curve is the sine curve

Examples

Example 1

Determine an equivalent trigonometric expression using an appropriate compound angle formula
a. $\sin \left(x-\frac{\pi}{2}\right)$
b. $\cos \left(x+\frac{3 \pi}{2}\right)$
c. $\tan \left(x+\frac{5 \pi}{6}\right)$

Solution
c. Using $\tan (A+B)=\frac{\tan (A)+\tan (B)}{1-\tan (A) \tan (B)}$ where $A=x$ and $B=\frac{5 \pi}{6}$, we have

$$
\begin{aligned}
\tan \left(x+\frac{5 \pi}{6}\right) & =\frac{\tan (x)+\tan \left(\frac{5 \pi}{6}\right)}{1-\tan (x) \tan \left(\frac{5 \pi}{6}\right)} \\
& =\frac{\tan (x)-\frac{1}{\sqrt{3}}}{1-\tan (x)\left(-\frac{1}{\sqrt{3}}\right)} \\
& =\frac{\left(\tan (x)-\frac{1}{\sqrt{3}}\right)}{\left(1+\frac{\tan (x)}{\sqrt{3}}\right)} \times \frac{\sqrt{3}}{\sqrt{3}} \\
& =\frac{\sqrt{3} \tan (x)-1}{\sqrt{3}+\tan (x)}
\end{aligned}
$$

Examples

Example 2

Express as a single trigonometric ratio using an appropriate compound angle formula
a. $\cos (\theta) \cos (2 \theta)-\sin (\theta) \sin (2 \theta)$

$$
\text { b. } \frac{\tan \left(\frac{\pi}{3}\right)-\tan \left(\frac{3 \pi}{4}\right)}{1+\tan \left(\frac{\pi}{3}\right) \tan \left(\frac{3 \pi}{4}\right)} \quad \text { c. } \frac{1}{2} \cos (x)+\frac{\sqrt{3}}{2} \sin (x)
$$

Solution

a. Using the sum formula for cosine,

$$
\cos (A+B)=\cos (A) \cos (B)-\sin (A) \sin (B)
$$

where $A=\theta$ and $B=2 \theta$, we have
$\cos (\theta) \cos (2 \theta)-\sin (\theta) \sin (2 \theta)=\cos (\theta+2 \theta)$

$$
=\cos (3 \theta)
$$

b. Using the difference formula for tangent,

$$
\tan (A-B)=\frac{\tan (A)-\tan (B)}{1+\tan (A) \tan (B)}
$$

where $A=\frac{\pi}{3}$ and $B=\frac{3 \pi}{4}$, we have

$$
\begin{aligned}
\frac{\tan \left(\frac{\pi}{3}\right)-\tan \left(\frac{3 \pi}{4}\right)}{1+\tan \left(\frac{\pi}{3}\right) \tan \left(\frac{3 \pi}{4}\right)} & =\tan \left(\frac{\pi}{3}-\frac{3 \pi}{4}\right) \\
& =\tan \left(\frac{4 \pi}{12}-\frac{9 \pi}{12}\right) \\
& =\tan \left(-\frac{5 \pi}{12}\right) \\
& =-\tan \left(\frac{5 \pi}{12}\right)
\end{aligned}
$$

Examples

Example 2

Express as a single trigonometric ratio using an appropriate compound angle formula.
a. $\cos (\theta) \cos (2 \theta)-\sin (\theta) \sin (2 \theta)$

$$
\text { b. } \frac{\tan \left(\frac{\pi}{3}\right)-\tan \left(\frac{3 \pi}{4}\right)}{1+\tan \left(\frac{\pi}{3}\right) \tan \left(\frac{3 \pi}{4}\right)}
$$

c. $\frac{1}{2} \cos (x)+\frac{\sqrt{3}}{2} \sin (x)$

Solution
c. Since $\sin \left(\frac{\pi}{6}\right)=\frac{1}{2}$ and $\cos \left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}$ then,

$$
\begin{aligned}
\frac{1}{2} \cos (x)+\frac{\sqrt{3}}{2} \sin (x) & =\sin \left(\frac{\pi}{6}\right) \cos (x)+\cos \left(\frac{\pi}{6}\right) \sin (x) \\
& =\sin \left(\frac{\pi}{6}+x\right)
\end{aligned}
$$

Examples

Example 2

Express as a single trigonometric ratio using an appropriate compound angle formula
a. $\cos (\theta) \cos (2 \theta)-\sin (\theta) \sin (2 \theta)$

$$
\text { b. } \frac{\tan \left(\frac{\pi}{3}\right)-\tan \left(\frac{3 \pi}{4}\right)}{1+\tan \left(\frac{\pi}{3}\right) \tan \left(\frac{3 \pi}{4}\right)}
$$

c. $\frac{1}{2} \cos (x)+\frac{\sqrt{3}}{2} \sin (x)$

Solution
c. An alternate expression can be obtained using $\sin \left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{2}$ and $\cos \left(\frac{\pi}{3}\right)=\frac{1}{2}$.

$$
\begin{aligned}
\frac{1}{2} \cos (x)+\frac{\sqrt{3}}{2} \sin (x) & =\cos \left(\frac{\pi}{3}\right) \cos (x)+\sin \left(\frac{\pi}{3}\right) \sin (x) \\
& =\cos \left(\frac{\pi}{3}-x\right)
\end{aligned}
$$

This implies that $\sin \left(\frac{\pi}{6}+x\right)=\cos \left(\frac{\pi}{3}-x\right)$

Examples

Example 2

Express as a single trigonometric ratio using an appropriate compound angle formula
a. $\cos (\theta) \cos (2 \theta)-\sin (\theta) \sin (2 \theta)$
b. $\frac{\tan \left(\frac{\pi}{3}\right)-\tan \left(\frac{3 \pi}{4}\right)}{1+\tan \left(\frac{\pi}{3}\right) \tan \left(\frac{3 \pi}{4}\right)}$
c. $\frac{1}{2} \cos (x)+\frac{\sqrt{3}}{2} \sin (x)$

Solution
To verify $\sin \left(\frac{\pi}{6}+x\right)=\cos \left(\frac{\pi}{3}-x\right)$ graphically, le
$f(x)=\sin \left(\frac{\pi}{6}+x\right)$ and $g(x)=\cos \left(\frac{\pi}{3}-x\right)$
The graph of $f(x)=\sin \left(x+\frac{\pi}{6}\right)$ can be obtained by
translating the graph of $y=\sin (x)$ to the left $\frac{\pi}{6}$.
The graph of $g(x)=\cos \left(-\left(x-\frac{\pi}{3}\right)\right)$ can be
obtained by reflecting the graph of $y=\cos (x)$ in the
y-axis, and translating the curve to the right $\frac{\pi}{3}$

Examples

We can use compound angle formulas to determine the exact value of any angle corresponding to the reference angles 15° and 75°, or in radians, $\frac{\pi}{12}$ and $\frac{5 \pi}{12}$.

Example 3

Determine the exact value of each using a compound angle formula.
a. $\sin \left(\frac{13 \pi}{12}\right)$
b. $\cos \left(195^{\circ}\right)$

Solution

a. $\sin \left(\frac{13 \pi}{12}\right)$

To determine the exact value of $\sin \left(\frac{13 \pi}{12}\right)$, we express $\frac{13 \pi}{12}$ as a sum or difference of two angles corresponding to the related acute angles $\frac{\pi}{6}, \frac{\pi}{4}$, or $\frac{\pi}{3}$. For example,

$$
\begin{aligned}
\frac{13 \pi}{12} & =\frac{9 \pi}{12}+\frac{4 \pi}{12} \\
& =\frac{3 \pi}{4}+\frac{\pi}{3}
\end{aligned}
$$

So, $\sin \left(\frac{13 \pi}{12}\right)=\sin \left(\frac{3 \pi}{4}+\frac{\pi}{3}\right)$

Examples

We can use compound angle formulas to determine the exact value of any angle corresponding to the reference angles 15° and 75°, or in radians, $\frac{\pi}{12}$ and $\frac{5 \pi}{12}$.

Example 3

Determine the exact value of each using a compound angle formula.
a. $\sin \left(\frac{13 \pi}{12}\right)$
b. $\cos \left(195^{\circ}\right)$

Solution

$$
\begin{aligned}
\sin \left(\frac{13 \pi}{12}\right) & =\sin \left(\frac{3 \pi}{4}+\frac{\pi}{3}\right) \quad \text { Therefore, the exact value of } \sin \left(\frac{13 \pi}{12}\right) \text { is } \\
& =\sin \left(\frac{3 \pi}{4}\right) \cos \left(\frac{\pi}{3}\right)+\cos \left(\frac{3 \pi}{4}\right) \sin \left(\frac{\pi}{3}\right) \quad \frac{\sqrt{2}-\sqrt{6}}{4} \\
& =\left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{2}\right)+\left(-\frac{1}{\sqrt{2}}\right)\left(\frac{\sqrt{3}}{2}\right) \\
& =\frac{1-\sqrt{3}}{2 \sqrt{2}} \\
& =\frac{1-\sqrt{3}}{2 \sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{2}-\sqrt{6}}{4}
\end{aligned}
$$

Examples

We can use compound angle formulas to determine the exact value of any angle corresponding to the reference angles 15° and 75°, or in radians, $\frac{\pi}{12}$ and $\frac{5 \pi}{12}$.

Example 3

Determine the exact value of each using a compound angle formula.
a. $\sin \left(\frac{13 \pi}{12}\right)$
b. $\cos \left(195^{\circ}\right)$

Solution

b. $\cos \left(195^{\circ}\right)$

$$
\begin{aligned}
\text { Since } 195^{\circ} & =225^{\circ}-30^{\circ} & \text { Since } 195^{\circ} & =135^{\circ}+60^{\circ} \\
\cos \left(195^{\circ}\right) & =\cos \left(225^{\circ}-30^{\circ}\right) & \cos \left(195^{\circ}\right) & =\cos \left(135^{\circ}+60^{\circ}\right) \\
& =\cos \left(225^{\circ}\right) \cos \left(30^{\circ}\right)+\sin \left(225^{\circ}\right) \sin \left(30^{\circ}\right) & & =\cos \left(135^{\circ}\right) \cos \left(60^{\circ}\right)-\sin \left(135^{\circ}\right) \sin \left(60^{\circ}\right) \\
& =\left(-\frac{1}{\sqrt{2}}\right)\left(\frac{\sqrt{3}}{2}\right)+\left(-\frac{1}{\sqrt{2}}\right)\left(\frac{1}{2}\right) & & =\left(-\frac{1}{\sqrt{2}}\right)\left(\frac{1}{2}\right)-\left(\frac{1}{\sqrt{2}}\right)\left(\frac{\sqrt{3}}{2}\right) \\
& =\frac{-\sqrt{3}-1}{2 \sqrt{2}} & & =\frac{-1-\sqrt{3}}{2 \sqrt{2}} \\
& =\frac{-\sqrt{6}-\sqrt{2}}{4} & & =\frac{-\sqrt{2}-\sqrt{6}}{4}
\end{aligned}
$$

Examples

Example 4

Prove that $\cos (x+y) \cos (x-y)=\cos ^{2}(x)-\sin ^{2}(y)$

Solution

$$
\begin{aligned}
\text { L.S. } & =\cos (x+y) \cos (x-y) \\
& =(\cos (x) \cos (y)-\sin (x) \sin (y))(\cos (x) \cos (y)+\sin (x) \sin (y)) \\
& =(\cos (x) \cos (y))^{2}+\cos (x) \cos (y) \sin (x) \sin (y)-\sin (x) \sin (y) \cos (x) \cos (y)-(\sin (x) \sin (y))^{2} \\
& =(\cos (x) \cos (y))^{2}-(\sin (x) \sin (y))^{2} \\
& =\cos ^{2}(x) \cos ^{2}(y)-\sin ^{2}(x) \sin ^{2}(y) \\
& =\cos ^{2}(x)\left(1-\sin ^{2}(y)\right)-\left(1-\cos ^{2}(x)\right) \sin ^{2}(y) \\
& =\cos ^{2}(x)-\cos ^{2}(x) \sin ^{2}(y)-\sin ^{2}(y)+\cos ^{2}(x) \sin ^{2}(y) \\
& =\cos ^{2}(x)-\sin ^{2}(y) \\
& =\text { R.S. }
\end{aligned}
$$

Therefore, $\cos (x+y) \cos (x-y)=\cos ^{2}(x)-\sin ^{2}(y)$

Examples

Example 5

Solve for x in $\frac{1}{\sin \left(x-\frac{\pi}{6}\right)-\sin \left(x+\frac{\pi}{6}\right)}=\sqrt{2}$, where $0 \leq x \leq 2 \pi$.
Solution

$$
\begin{aligned}
\frac{1}{\sin \left(x-\frac{\pi}{6}\right)-\sin \left(x+\frac{\pi}{6}\right)} & =\sqrt{2} \\
\frac{1}{\left(\sin (x) \cos \left(\frac{\pi}{6}\right)-\cos (x) \sin \left(\frac{\pi}{6}\right)\right)-\left(\sin (x) \cos \left(\frac{\pi}{6}\right)+\cos (x) \sin \left(\frac{\pi}{6}\right)\right)} & =\sqrt{2} \\
\frac{1}{\sin (x) \cos \left(\frac{\pi}{6}\right)-\cos (x) \sin \left(\frac{\pi}{6}\right)-\sin (x) \cos \left(\frac{\pi}{6}\right)-\cos (x) \sin \left(\frac{\pi}{6}\right)} & =\sqrt{2} \\
\frac{1}{-\cos (x) \sin \left(\frac{\pi}{6}\right)-\cos (x) \sin \left(\frac{\pi}{6}\right)} & =\sqrt{2} \\
\frac{1}{-2 \cos (x) \sin \left(\frac{\pi}{6}\right)} & =\sqrt{2}
\end{aligned}
$$

Examples

Example 5
Solve for x in $\frac{1}{\sin \left(x-\frac{\pi}{6}\right)-\sin \left(x+\frac{\pi}{6}\right)}=\sqrt{2}$, where $0 \leq x \leq 2 \pi$
Solution

$$
\begin{aligned}
\frac{1}{-2 \cos (x) \sin \left(\frac{\pi}{6}\right)} & =\sqrt{2} \\
\frac{1}{-2 \cos (x)\left(\frac{1}{2}\right)} & =\sqrt{2} \\
\frac{1}{-\cos (x)} & =\sqrt{2} \\
-\sqrt{2} \cos (x) & =1 \\
\cos (x) & =-\frac{1}{\sqrt{2}} \\
\text { Therefore, } x & =\frac{3 \pi}{4} \text { or } \frac{5 \pi}{4} .
\end{aligned}
$$

Examples

Example 6

Solve $\sqrt{3} \sin (x)+3 \cos (x)=-\sqrt{6}, 0 \leq x \leq 2 \pi$ by first expressing $\sqrt{3} \sin (x)+3 \cos (x)$ in the form $a \sin (x-h)$.

Solution
First, find a value for a and h such that $\sqrt{3} \sin (x)+3 \cos (x)=a \sin (x-h)$

$$
\begin{aligned}
\sqrt{3} \sin (x)+3 \cos (x) & =a \sin (x-h) \\
& =a(\sin (x) \cos (h)-\cos (x) \sin (h)) \\
& =a \sin (x) \cos (h)-a \cos (x) \sin (h) \\
\sqrt{3} \sin (x)+3 \cos (x) & =a \sin (x) \cos (h)-a \cos (x) \sin (h)
\end{aligned}
$$

Therefore,

$$
\begin{align*}
a \cos (h) & =\sqrt{3} \tag{1}\\
-a \sin (h) & =3 \tag{2}
\end{align*}
$$

Examples

Example 6
Solve $\sqrt{3} \sin (x)+3 \cos (x)=-\sqrt{6}, 0 \leq x \leq 2 \pi$ by first expressing $\sqrt{3} \sin (x)+3 \cos (x)$ in the form $a \sin (x-h)$

Solution
We have established two equations to solve for the two unknowns \boldsymbol{a} and \boldsymbol{h},

$$
\begin{align*}
a \cos (h) & =\sqrt{3} \tag{1}\\
-a \sin (h) & =3 \tag{2}
\end{align*}
$$

Dividing equation (2) by equation (1),

$$
\begin{aligned}
\frac{-a \sin (h)}{a \cos (h)} & =\frac{3}{\sqrt{3}} \\
-\tan (h) & =\frac{3}{\sqrt{3}} \\
\tan (h) & =-\frac{3}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} \\
\tan (h) & =-\sqrt{3}
\end{aligned}
$$

and therefore, $h=\frac{2 \pi}{3}$ is one possible solution.

Examples

Example 6
Solve $\sqrt{3} \sin (x)+3 \cos (x)=-\sqrt{6}, 0 \leq x \leq 2 \pi$ by first expressing $\sqrt{3} \sin (x)+3 \cos (x)$ in the form $a \sin (x-h)$

Solution
We need only one value for h; substituting $h=\frac{2 \pi}{3}$ into (1),

$$
\begin{aligned}
a \cos \left(\frac{2 \pi}{3}\right) & =\sqrt{3} \\
a\left(-\frac{1}{2}\right) & =\sqrt{3} \\
a & =-2 \sqrt{3}
\end{aligned}
$$

Therefore, $\sqrt{3} \sin (x)+3 \cos (x)=-2 \sqrt{3} \sin \left(x-\frac{2 \pi}{3}\right)$
Substituting this form into $\sqrt{3} \sin (x)+3 \cos (x)=-\sqrt{6}$, we have

$$
-2 \sqrt{3} \sin \left(x-\frac{2 \pi}{3}\right)=-\sqrt{6}
$$

Examples

Example 6
Solve $\sqrt{3} \sin (x)+3 \cos (x)=-\sqrt{6}, 0 \leq x \leq 2 \pi$ by first expressing $\sqrt{3} \sin (x)+3 \cos (x)$ in the form $a \sin (x-h)$.

Solution

$$
-2 \sqrt{3} \sin \left(x-\frac{2 \pi}{3}\right)=-\sqrt{6}
$$

We are now ready to solve for \boldsymbol{x} by first isolating
$\sin \left(x-\frac{2 \pi}{3}\right)$.
$\sin \left(x-\frac{2 \pi}{3}\right)=-\frac{\sqrt{6}}{-2 \sqrt{3}}$
$\sin \left(x-\frac{2 \pi}{3}\right)=\frac{\sqrt{2}}{2}$ or $\frac{1}{\sqrt{2}}$
$x-\frac{2 \pi}{3}=\frac{\pi}{4}, \frac{3 \pi}{4}$
All possible solutions for $x-\frac{2 \pi}{3}$ are given by $\frac{\pi}{4}+2 \pi n$
and $\frac{3 \pi}{4}+2 \pi n$ where $n \in \mathbb{Z}$.

Examples

Example 6

Solve $\sqrt{3} \sin (x)+3 \cos (x)=-\sqrt{6}, 0 \leq x \leq 2 \pi$ by first expressing $\sqrt{3} \sin (x)+3 \cos (x)$ in the form $a \sin (x-h)$.

Solution
For $0 \leq x \leq 2 \pi$, we have

$$
\begin{aligned}
x-\frac{2 \pi}{3} & =\frac{\pi}{4}, \frac{3 \pi}{4} \\
x & =\frac{\pi}{4}+\frac{2 \pi}{3}, \frac{3 \pi}{4}+\frac{2 \pi}{3} \\
x & =\frac{3 \pi}{12}+\frac{8 \pi}{12}, \frac{9 \pi}{12}+\frac{8 \pi}{12} \\
x & =\frac{11 \pi}{12}, \frac{17 \pi}{12}
\end{aligned}
$$

Therefore, the solutions to $\sqrt{3} \sin (x)+3 \cos (x)=-\sqrt{6}$, for $0 \leq x \leq 2 \pi$ are $\frac{11 \pi}{12}, \frac{17 \pi}{12}$

Examples

Example 6

Solve $\sqrt{3} \sin (x)+3 \cos (x)=-\sqrt{6}, 0 \leq x \leq 2 \pi$ by first expressing $\sqrt{3} \sin (x)+3 \cos (x)$ in the form $a \sin (x-h)$

Solution

We were able to solve $\sqrt{3} \sin (x)+3 \cos (x)=-\sqrt{6}$ by first determining an equivalent expression for $\sqrt{3} \sin (x)+3 \cos (x)$ using an appropriate compound angle formula.
We can verify this equivalence and the solutions to the equation using graphing technology.
The graph of $y=\sqrt{3} \sin (x)+3 \cos (x)$ is the same as the graph of $y=-2 \sqrt{3} \sin \left(x-\frac{2 \pi}{3}\right)$ and this graph intersects the line $y=-\sqrt{6}$ at approximately 2.88 and 4.45 , or $\frac{11 \pi}{12}$ and $\frac{17 \pi}{12}$.

Summary

Angle Sum Formulas

$\sin (A+B)=\sin (A) \cos (B)+\cos (A) \sin (B)$
$\cos (A+B)=\cos (A) \cos (B)-\sin (A) \sin (B)$
$\tan (A+B)=\frac{\tan (A)+\tan (B)}{1-\tan (A) \tan (B)}$

Angle Difference Formulas

$$
\begin{aligned}
& \sin (A-B)=\sin (A) \cos (B)-\cos (A) \sin (B) \\
& \cos (A-B)=\cos (A) \cos (B)+\sin (A) \sin (B) \\
& \tan (A-B)=\frac{\tan (A)-\tan (B)}{1+\tan (A) \tan (B)}
\end{aligned}
$$

Compound angle formulas can be used to

- simplify trigonometric expressions and determine equivalent forms,
- prove identities,
- find exact values for angles related to the acute angles $\frac{\pi}{12}$ and $\frac{5 \pi}{12}$, and
- solve trigonometric equations.

