The CENTRE for EDUCATION
in MATHEMATICS and COMPUTING

Properties of Definite Integrals

In This Module

some rules make sense.

For those rules remaining, we will rely on enlightening examples.

We will present some basic properties of definite integrals that will help simplify the process of integration.
Full verifications for most of the properties are beyond the scope of this course, but you will be able to intuitively see why

Order of Integration Property

Given an interval [a, b] (where @ < b), what happens when
we integrate in the reverse direction from b to a?

Az:a—b:_b—a

i) mn

Order of Integration

]:f(m)dw=—[f{z)dz

Y

In the definition of Riemann sums, we considered an interval [a, b] and hence implicitly assumed thata < b.
We would like to extend our definition to include the case wherea > bora = b.

—_
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Zero Property

Given @ = b, what happens when we integrate from a to a?
a—a

Az = =0 v

n

Zero Rule

ff(z}dz:u

Additivity Property

We can combine integrals of the same function over adjacent intervals.

Additivity Rule 4

[f{z)dz+[f(z}dz=[f(m)dz

This is harder to prove if we don't have f(z) > 0 and
a<b<e
The result will be the net area bounded by the function over

the entire interval [a, c], which is the value of the definite
integral from a to c.

D [mememememennmcemen

Ciesssssssssssans
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Constant Multiples Property

b b
How are the definite integrals f f(z) dz and f kf(z) dz, where k is any constant, related?
a a

Example 1

1 1 1
4]
Considertheintegralsj zdz,f 4z dx, andj —2z dzx. y
0 0 0 1

Observations 34

1 ]
/; zdzr = (1)[1):5 5] y =4z

1 |
lezdz: ):2
0 1 Y=z

[_2”"' =—%(1){2)=(—2)(%) . 0_

1

[0 I ST
]

(1)(4) = {4)(

e e L L L L L L L L LTI,
—

Constant Multiples Property

Example 2

1 1 1
Consider the integrals / z? dz, f 4g? dz, and / —2z° de.
0 0 0

Observations

© CEMC and University of Waterloo

Page 3 of 12



Constant Multiples Property

Example 2

1 1 1
Consider the integrals / z? de, / 4z? dzx, and / —22? dz.
0 0 0

Questions

* Can you verify the values of these definite integrals using limits of Riemann sums?

1 1
« Can you prove in general that f kx dz = kf x dzx for any number k?
0 0

1 1
« Can you prove in general thatf kz? dz = kf z? da for any number k?
0 0

Constant Multiple Rule
b b
f kf(z) dz = kf f(z) dzforany k € R

Constants (and only constants!) can be “factored out” of an integral.

Sum of Functions Property

b b b
How is the integral f (f(z) + g(z)) dz related to the integrals f f(z) dz and f g(z) dz?
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Sum of Functions Property

Example 3

1 1 1
Consider the integrals / z dz, / z? dz, and j (z+ zQ] dx.
0 0 0

Observations
24 24 24
1 1 1
] x de + f z? dx = /(z+:|:2}d:|:
0 0 0
1.5 1.5 1.5
i _ i 2
1 Yy==z 1 . y=xr+zx
0.5 0.5 .7 0.5
y=2’
0 - ; - ; = 0 ; - . - ] T T
0z 04 06 08 1 02 04 06 08 1 02 1

Sum of Functions Property

Sum Rule
/ (&) + g(e) de = / ’ fa) do + / ' () da

The integral of a sum is the sum of the integrals.
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Difference of Functions Property

b b b
How is the integral f (f(z) — g(z)) dz related to the integrals f f(z) dz and / g(z) dz?
a a a
Luckily, we already know how to deal with this case using our rule for constant multiples and our rule for sums.

We canwrite f(z) — g(z) = f(z) + (—-1) - g(z).
Therefore, we have

b b
f (f(z) - g(a)) da = f (f() + (~1)g(z)) de
b b
=f flz) de + f ((—1)g(z)) dz sums of functions rule

b b
= f fl(z) dz + (—l]f g(z) dz constant multiples rule (k = —1)

- [ rerde [ ooy

Difference Rule
/ ' (F(=) — gla))dz = / FoE— / e

The integral of a difference is the difference of the integrals.

Example

Example 4
1 2 1
Given that/ f(z) dz =3, / f(z) de = —4, and f g(z) de = —2, evaluate the following definite integrals:
-1 1 -1
Solution

11 1 1
1_/:1Ef(z}dz: Ef_lf(z)dz
—_—

constant multiple

1 3
—3®=3

1
2. f g(z) dz = 0 by the zero rule
1
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Example

Example 4
1 2 1
Given thatf f(z) dz =3, f f(z) de = —4, and f g(z) de = —2, evaluate the following definite integrals:
-1 1 -1
Solution

1 1 1
3 f (F(e) ~3g(a)) ds = f fle) dz— f g(e) do
difference of functions
i i
=f1f(2)dz— 3[19@-)4:

constant multiple
=3-3(-2)=9

Example

Example 4
1 2 1
Given thatf f(z) dz =3, f f(z) de = —4, and / g(z) do = —2, evaluate the following definite integrals:
-1 1 -1
Solution
2 2
4_/ 2f(z) dz = 2[ f(z) dz
-1 -1

e
constant multiple

_9 fif{m)dz+£2f(z)h
additivity
— 934 (—4)] = -2
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Example

Example 4
1 2 1
Given thatf f(z) dz =3, f f(z) de = —4, and / g(z) do = —2, evaluate the following definite integrals:
-1 1 -1

Solution

-1 -1 -1
5 fl (~4f(z) + 5g(z)) dz = fl ~4f(z) da + j: 59(z) do

sum of functions
1 1
_ _4f f(z)dz + 5[ o(z) dz
1 1
—— S——
constant multiple  constant multiple

=[+4 flf(n:]da: ]+[—5 flg(m}dm ]
1 1
—_— —_—

order of integration order of integration
=4(3) + (-5)(—2) =22

Summary of the Properties of Definite Integrals

1_Zer0:fﬂf(a:}da: =0
2. Order of Integration: fﬂ flz)dz = — fb‘f{z) dz

b a

b c c

3. Additivity: f{; f(z) dz + j; flz) dz = /!; f(z) dz

b b
4. Constant Multiples: f kf(z) dz = kf f(z) dzforanyk € R

b b b

5. Sum: f (f(z) +g(x)) dz = f fl(z) dz + f g(z) dz
6. Difference: fb(f(z} —g(z)) dz = fb_f(z) dz — [bg(:r) dz

Remarks:

1. These rules only apply if all of the integrals in question are defined.

2_lt is important to note that, although our explanations and pictures dealt mainly with positive functions and
a < b < ¢, each of these properties are true for any continuous functions f(z), g(z) and any numbers &, a, b,
and c.
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Summary of the Properties of Definite Integrals

The Variable of Integration

b
The choice of the variable z in the integral f f(z) dz is notimportant.
a

,£ @) da f " (o) d, f 10 d, f " f(u) du

are all different ways of writing the same gquantity.

In other words, the integrals

Each definite integral represents the computation of the area bounded by the function f froma to b.
The function, f, and the endpoints, @ and b, remain the same; only the variable of integration is changing.

Challenge Example

In the next module, we will discuss the fundamental theorem of calculus, which connects the two branches: differential
calculus and integral calculus.

Here, we discuss an example to help motivate this result due to Newton and Leibniz.
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Try the following exercise:
Pick your favourite continuous function f(z) over some closed interval [a, b].

For this example, we will use the function f(z) = % sin(7z) over [1, 2], but the choice doesn't really matter!
Choose any x value satisfying 1 < x < 2.

Draw a vertical line at z = a and at your value of & and colour in the region bounded by f(x), the z-axis and your two
vertical lines.

Observe that if you select a different & value, then the shaded region will be different.

Here are some examples forz = 1.1, 1.2, ..., 1.9, 2.
159 . .
Y a=1 b=2:
11 (1:4(1) :
0.5 1
W
0 4 ;

-0,5 1 .
y = f(z)

. .
. .

For a fixed x, we can represent the corresponding shaded region using a definite integral.
Here we need to be a bit careful with notation.

We are using & twice, once to represent the point between 1 and 2 that we fix, and once to represent the variable in the
function f(z).

To get around this, we will think of f being a function of a “new” variable t.
So we have the function f(t) = % sin(7t) fromt = 1tot = 2.

Mow if we fix 1 < @ < 2, the corresponding shaded region is the region bounded by the curve y = f(t) and the z-axis
fromt =1tot = x.

In other words, the shaded region is the value of the definite integral

[ "ty dt

But, this definite integral is a function of z!
Let's call this function F.

Then, foreach 1 < & < 2 we have

I
F(z) = f f(t) dt = Net area of the shaded region fromt =1tot ==
1
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Question: What is the derivative of the function F'(z)?

Recall the formal definition of the derivative
F(z + k) — F(z)
h

The denominator of this fraction is the horizontal change in &, which we will denote by Az; the numerator is the
corresponding change in the function F from x to & + h, which we will denote by AF"

F'(z) = lim
h—0

In this new notation our equation becomes

AF
F'(z) = lim —
(@) Az—0 Az
Let's see what these quantities look like in a picture.
1.5 7 . .
Voa=1 b=2:
11 E (fu..”, f(:r")) :

v = f(z)

-14 ' .

This is a graph to help represent the value of F'(1.1), but the same method works for F'(z) for any & in the interval
(1,2).

We have vertical lines at z = 1 and & = 1.1, the value F'(1.1) is the area of the dark shaded region (fromz = 1 to
x = 1.1), the value AF'is the area of the light shaded strip, and the value Az is the base of the light shaded strip.

: : . AF
What is happening to the quantity A_ as Az — 07
T

If Az is small enough then the light shaded region, AF' is essentially the area of a rectangle.

AF = base x height ~ Az x f(z)

F
We conclude that —— =2 f(z) for small Az, and so our guess is that

Az

. AF _
1y =1
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Let's see what is happening numerically with our example.

Az AF
1.15
0.05 f(z) dz = 0.4421662986
1.1
1.14
0.04 / f(z) dz = 0.03559761280
1.1
1.3
0.03 f(z) dz = 0.02682520321
11
1.12
0.02 f f(z) dz = 0.01794002380
1.1
111
0.01 f(z) dz = 0.008983962260
11

Note that f(1.1) = 0.8983347581.

~AF
It looks like Az f(1.1)as Az — 0.

Do you believe that F'(z) = a]jmu % = f(z)?
z—0 Az

T
In other words, do you believe that F'(z) = f f(t) dt is an antiderivative of f(z)?
1

AF/Az

0.8843325972

0.8899403200

0.8941734402

0.8970011900

0.8983962260
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