The Intersection Of Two Lines In R2 And R3

Intersection of Lines in \mathbb{R}^{2} and \mathbb{R}^{3}

3 Dimensions

The three cases in which two lines may intersect in \mathbb{R}^{2} also exist in \mathbb{R}^{3}. The two lines may

- intersect in exactly one point,
- be parallel and distinct and not intersect, or
- be coincident and intersect in an infinite number of points.

However, there is one additional possibility in \mathbb{R}^{3} not found in \mathbb{R}^{2} : skew lines.
Two lines in \mathbb{R}^{3} are said to be skew lines if they are not parallel and do not intersect. Equivalently, they are lines that are not coplanar.

Examples

Example 1

Find the points of intersection of the following lines.
a. In $\mathbb{R}^{2}: l_{1}: 2 x-3 y+8=0$
$l_{2}: 2 x-3 y-1=0$

Solution

Method 1
Since the normal vectors for the two lines are equal $\left(\overrightarrow{n_{1}}=(2,-3)=\overrightarrow{n_{2}}\right)$ and the constant terms are not equal ($8 \neq-1$), then l_{1} and l_{2} are parallel and distinct.
Thus, the two lines, l_{1} and l_{2}, do not intersect.

Method 2

Using elimination, we subtract the two equations to get $9=0$
This statement is clearly not true and is independent of the values of x and y
Hence, the two lines share no common point and thus do not intersect.
Since these are lines in \mathbb{R}^{2}, they must be parallel and distinct
If a linear system of equations has no solutions, such as the system in part \mathbf{a}, then the system is said to be inconsistent.
If a linear system has at least 1 solution, then it is said to be consistent.

Examples

Example 1

Find the points of intersection of the following lines.
b. $\ln \mathbb{R}^{2}: l_{1}: x-5 y+6=0$
$l_{2}: 3 x+10 y-7=0$

Solution

Recognizing that the normal vectors are not scalar multiples of one another (l_{1} and l_{2} are not parallel), we again use the method of elimination
Multiplying the first equation by 2 and adding the two equations, we get

$2 x-10 y+12$	$=0$
$+3 x+10 y-7$	$=0$
$5 x+5$	$=0$

so $x=-1$
Substituting $x=-1$ into the first equation, we solve to get $y=1$.
Hence, the two lines intersect at the point $(-1,1)$.
This is an example of a linear system of equations that is consistent.

Examples

Example 1

Find the points of intersection of the following lines.
c. In $\mathbb{R}^{3}: l_{1}:(x, y, z)=(9,3,4)+t(4,0,2), t \in \mathbb{R}$

$$
l_{2}: x=3 r-2, \quad y=6-3 r, \quad z=r-1, r \in \mathbb{R}
$$

Solution

There are many different approaches for solving systems of this form

Method 1

In this first method, we will solve by converting both lines into parametric equations and determining the values of the parameters t and r.

Converting l_{1} into parametric form gives $x=9+4 t, y=3$, and $z=4+2 t$.
Equating the parametric equations for x, we get

$$
\begin{align*}
9+4 t & =3 r-2 \\
\therefore 3 r & =4 t+11 \tag{1}
\end{align*}
$$

Equating the parametric equations for y, we get

$$
\begin{aligned}
3 & =6-3 r \\
3 r & =3 \\
\therefore r & =1
\end{aligned}
$$

Substituting $r=1$ into the equation for l_{2} gives $x=3(1)-2=1, y=6-3(1)=3$, and $z=1-1=0$.

Examples

Example 1

Find the points of intersection of the following lines.
c. In $\mathbb{R}^{3}: l_{1}:(x, y, z)=(9,3,4)+t(4,0,2), t \in \mathbb{R}$

$$
l_{2}: x=3 r-2, \quad y=6-3 r, \quad z=r-1, r \in \mathbb{R}
$$

Solution

There are many different approaches for solving systems of this form
We must verify that this point $(1,3,0)$ also lies on l_{1}
By substituting $r=1$ into equation (1), we can find the value of the parameter t for l_{1}

$$
\begin{align*}
3 r & =4 t+11 \tag{1}\\
3(1) & =4 t+11 \\
4 t & =-8 \\
t & =-2
\end{align*}
$$

Substituting $t=-2$ into the equation for l_{1} gives $(x, y, z)=(1,3,0)$
Therefore, l_{1} and l_{2} intersect at the point $(1,3,0)$.

Examples

Example 1

Find the points of intersection of the following lines.
c. In $\mathbb{R}^{3}: l_{1}:(x, y, z)=(9,3,4)+t(4,0,2), t \in \mathbb{R}$

$$
l_{2}: x=3 r-2, \quad y=6-3 r, \quad z=r-1, r \in \mathbb{R}
$$

Solution

Method 2

Another way to solve this system is to write the equation of l_{1} in symmetric form, and then substitute the parametric equations of l_{2} into l_{1}
To this effect, the symmetric equations of l_{1} are

$$
l_{1}: \quad \frac{x-9}{4}=\frac{z-4}{2}, y=3
$$

Substituting $l_{2}(x=3 r-2$ and $z=r-1)$ into l_{1} and solving for r, we get

$$
\begin{aligned}
\frac{(3 r-2)-9}{4} & =\frac{(r-1)-4}{2} \\
\frac{3 r-11}{4} & =\frac{r-5}{2} \\
6 r-22 & =4 r-20 \\
2 r & =2 \\
r & =1
\end{aligned}
$$

Examples

Example 1

Find the points of intersection of the following lines.
c. In $\mathbb{R}^{3}: l_{1}:(x, y, z)=(9,3,4)+t(4,0,2), t \in \mathbb{R}$

$$
l_{2}: x=3 r-2, \quad y=6-3 r, \quad z=r-1, r \in \mathbb{R}
$$

Solution

Method 2

$$
l_{1}: \quad \frac{x-9}{4}=\frac{z-4}{2}, y=3
$$

When $r=1$, the x and z coordinates of l_{2} are $x=3(1)-2=1$ and $z=1-1=0$.
These ($x=1, z=0$) also satisfy the symmetric equations of l_{1}, since $\frac{1-9}{4}=\frac{0-4}{2}$
We must still verify that the y coordinate of $l_{1}, y=3$, also satisfies l_{2} when $r=1$.
Substituting, we get $y=6-3 r=6-3(1)=3$
Therefore, the point of intersection is $(1,3,0)$.

Examples

Example 1

Find the points of intersection of the following lines.
d. $\ln \mathbb{R}^{3}: l_{1}: \vec{r}=(3,1,-1)+t(2,1,-3), t \in \mathbb{R}$ and $l_{2}: \frac{x-7}{2}=\frac{y-12}{-4}=\frac{z-17}{5}$

Solution

Method 1

The parametric equations for l_{1} are $x=3+2 t, y=1+t, z=-1-3 t, t \in \mathbb{R}$.
To convert the symmetric equations for l_{2} to parametric equations, equate each expression with r (since they are equal to one another, they are equal to some parameter $r \in \mathbb{R}$) and solve each for the appropriate coordinate; that is

$$
\begin{array}{lll}
r=\frac{x-7}{2} & r=\frac{y-12}{-4} & r=\frac{z-17}{5} \\
x=2 r+7 & y=-4 r+12 & z=5 r+17
\end{array}
$$

Equating the corresponding parametric equations for l_{1} and l_{2}, we get

$$
\begin{array}{rlrlrl}
3+2 t & =2 r+7 & 1+t & =-4 r+12 & -1-3 t & =5 r+17 \\
t-r & =2 & \text { (1) } & t+4 r & =11 & \text { (2) }
\end{array}
$$

We have a system of three linear equations in two unknowns, t and r We may, again, use the method of elimination to solve for t and r Subtracting equations (1) and (2), we get $-5 r=-9$ and so $r=\frac{9}{5}$. Substituting $r=\frac{9}{5}$ into (1) gives $t=2+\frac{9}{5}=\frac{19}{5}$.

Examples

Example 1

Find the points of intersection of the following lines
d. $\operatorname{In} \mathbb{R}^{3}: l_{1}: \vec{r}=(3,1,-1)+t(2,1,-3), t \in \mathbb{R}$ and $l_{2}: \frac{x-7}{2}=\frac{y-12}{-4}=\frac{z-17}{5}$

Solution

Method 1

$$
\begin{equation*}
3 t+5 r=-18 \tag{3}
\end{equation*}
$$

For the system of equations to be consistent (have a solution), $r=\frac{9}{5}$ and $t=\frac{19}{5}$ must also satisfy equation (3) Substituting, we get

$$
3 t+5 r=3\left(\frac{19}{5}\right)+5\left(\frac{9}{5}\right)=\frac{57+45}{5}=\frac{102}{5} \neq-18
$$

Therefore, this system of equations has no solution and hence these two lines do not intersect.
By inspecting the parametric equations of both lines, we see that the direction vectors of the two lines are not scalar multiples of each other, so the lines are not parallel
These lines are in \mathbb{R}^{3}, are not parallel, and do not intersect, and so l_{1} and l_{2} are skew lines.

Examples

Example 1

Find the points of intersection of the following lines.
d. $\ln \mathbb{R}^{3}: l_{1}: \vec{r}=(3,1,-1)+t(2,1,-3), t \in \mathbb{R}$ and $l_{2}: \frac{x-7}{2}=\frac{y-12}{-4}=\frac{z-17}{5}$

Solution

Method 2

As before, an alternative solution is to derive the parametric equations for l_{1}, and then substitute them into the symmetric equation for l_{2} and verify consistency

Substituting the parametric equations $x=3+2 t$ and $y=1+t$ of l_{1} into the symmetric equations of l_{2},

$$
\begin{aligned}
\frac{x-7}{2} & =\frac{y-12}{-4} \\
\frac{(3+2 t)-7}{2} & =\frac{(1+t)-12}{-4} \\
\frac{2 t-4}{2} & =\frac{t-11}{-4} \\
-4(t-2) & =t-11 \\
-5 t & =-19 \\
t & =\frac{19}{5}
\end{aligned}
$$

Repeating the process by using the parametric equations $y=1+t$ and $z=-1-3 t$, we get

$$
\begin{aligned}
\frac{y-12}{-4} & =\frac{z-17}{5} \\
\frac{(1+t)-12}{-4} & =\frac{(-1-3 t)-17}{5} \\
\frac{t-11}{-4} & =\frac{-3 t-18}{5} \\
5 t-55 & =12 t+72 \\
7 t & =-127 \\
t & =-\frac{127}{7} \neq \frac{19}{5}
\end{aligned}
$$

Examples

Example 1

Find the points of intersection of the following lines
d. $\operatorname{In} \mathbb{R}^{3}: l_{1}: \vec{r}=(3,1,-1)+t(2,1,-3), t \in \mathbb{R}$ and $l_{2}: \frac{x-7}{2}=\frac{y-12}{-4}=\frac{z-17}{5}$

Solution

Thus, there is no point on l_{1} that also satisfies l_{2}.
There is no solution to this system of equations, so the lines do not intersect.

