

 \overline{z}

O

 \sqrt{x}

Introduction

It naturally follows that a plane (2-dimensional object) can be described using a point in the plane and two direction vectors. However, recall that two collinear vectors lie on (and describe) the same line; thus, the two direction vectors describing the plane must be non-collinear.

The vector equation of a plane describes the position vector, OP , of any arbitrary point, P , in the plane.

To derive the vector equation for an arbitrary plane, consider

The coordinates of P can be determined from the vector sum

$$
(1) \qquad \overrightarrow{OP} = \overrightarrow{OP_0} + \overrightarrow{P_0P}
$$

as shown in the diagram.

Introduction

If we take any two non-collinear vectors in the plane, then any \overline{z} arbitrary vector in the plane (such as $\overrightarrow{P_0P}$) can be expressed яñ. as a vector sum of scalar multiples of these two vectors. Let \vec{a} and \vec{b} be two such vectors in the plane. Then $s\vec{a} + t\vec{b} = \overline{P_0P}$, for some $s, t \in \mathbb{R}$ as shown in the diagram. This vector $s\vec{a} + t\vec{b}$ is called a linear combination of vectors \vec{a} y and \vec{b} . Ω Substituting this into equation (1), $\overrightarrow{OP} = \overrightarrow{OP_0} + \overrightarrow{P_0P}$, $\mathscr{L}x$ we get $\overrightarrow{OP} = \overrightarrow{OP_0} + s\vec{a} + t\vec{b}$, $s, t \in \mathbb{R}$ which is the vector equation of the plane. The **vector equation of a plane**, $\overrightarrow{OP} = \overrightarrow{OP_0} + s\vec{a} + t\vec{b}$, gives the position vector \overrightarrow{OP} of any point $P(x, y, z)$ in the plane. It is written as the sum of the position vector $\overrightarrow{OP_0}$ of any fixed point $P_0(x_0,y_0,z_0)$ in the plane and a linear combination of any two non-collinear vectors, \vec{a} and \vec{b} , that lie in the plane. An alternative method of writing the vector equation is to let $\vec{r} = \overrightarrow{OP}$ and $\overrightarrow{r_0} = \overrightarrow{OP_0}$, giving $\vec{r} = \overrightarrow{r_0} + s\vec{a} + t\vec{b}, s, t \in \mathbb{R}$

 \boldsymbol{y}

Parametric Equations of a Plane

Rewriting the vector equation of a plane into its x, y , and z components, we get

$$
\vec{r} = \vec{r_0} + s\vec{a} + t\vec{b}, \ \ s,t \in \mathbb{R} \\ (x,y,z) = (x_0,y_0,z_0) + s(a_1,a_2,a_3) + t(b_1,b_2,b_3), \ \ s,t \in \mathbb{R}
$$

We then see that the parametric equations of a plane are

 $x = x_0 + sa_1 + tb_1$ $y = y_0 + sa_2 + tb_2$ $z = z_0 + sa_3 + tb_3, s, t \in \mathbb{R}$

Examples

Example 1

Points $U(3,0,-1)$, $V(-3,1,2)$, and $W(4,7,-1)$ lie in a plane. Find the vector and parametric equations of the plane.

Solution

The vector equation of a plane requires a point in the plane and two non-collinear vectors. Observe that $\overrightarrow{UV} = (-6, 1, 3)$ and $\overrightarrow{UW} = (1, 7, 0)$ are non-collinear.

We can use the position vector of any of the three points U, V , or W as $\overrightarrow{r_0}$.

Choosing $U(3,0,-1)$ gives the vector equation of the plane as

$$
\vec{r}=(3,0,-1)+s(-6,1,3)+t(1,7,0), \ \ \, s,t\in\mathbb{R}
$$

from which the parametric equations are

Example 2

Does $(-1, 11, 2)$ lie in the plane described by $\vec{r} = (-6, 6, -1) + s(3, 4, 0) + t(8, -1, -3), s, t \in \mathbb{R}$?

Examples

Example 2

Does $(-1, 11, 2)$ lie in the plane described by $\vec{r} = (-6, 6, -1) + s(3, 4, 0) + t(8, -1, -3), s, t \in \mathbb{R}$?

Solution

If the point lies in the plane, its coordinates must satisfy the parametric equations.

 $-1 = -6 + 3s + 8t$ (1) (2) $11=6+4s-t$ (3) $2=-1-3t$

From equation (3), we solve to get $t = -1$. Substituting $t = -1$ into (2) gives

 $11 = 6 + 4s + 1$ $4=4s$ $s=1$

So, $s = 1$ and $t = -1$. Finally, we check if these values for the parameters satisfy equation (1).

Since $-6+3s+8t = -6+3(1) + 8(-1) = -11 \neq -1$, then $(-1, 11, 2)$ does not lie in the plane.

Examples

Example 3

Two parallel (and distinct) lines $\overrightarrow{r_1} = (1,0,-2) + s(2,-4,4), s \in \mathbb{R}$ and

 $\overrightarrow{r_2}$ = (-2, 3, 0) + t(-1, 2, -2), $t \in \mathbb{R}$ lie in a plane. Find the equation of the plane.

Solution

The direction vector $(-1, 2, -2)$ is a vector in the plane.

To obtain a second non-collinear vector in the plane, we determine the vector between the two given points on the lines; this is the vector $(-2,3,0)-(1,0,-2)=(-3,3,2)$.

Choosing $(1,0,-2)$ as a fixed point in the plane, we get a vector equation for the plane to be

 $\vec{r} = (1,0,-2) + c(-1,2,-2) + k(-3,3,2), c, k \in \mathbb{R}$

Examples

Example 4

 $z = -1 + 8c + 2k, c, k \in \mathbb{R}$