

Introduction

A line (1-dimensional object) in space may be described using a point on the line and a single direction vector.

It naturally follows that a plane (2-dimensional object) can be described using a point in the plane and two direction vectors. However, recall that two collinear vectors lie on (and describe) the same line; thus, the two direction vectors describing the plane must be non-collinear.

The vector equation of a plane describes the position vector, \overrightarrow{OP} , of any arbitrary point, P, in the plane.

To derive the vector equation for an arbitrary plane, consider the following:

Let P_0 be a fixed point in the plane, and let P be any other arbitrary point in the plane. The coordinates of P can be determined from the vector sum

(1)
$$\overrightarrow{OP} = \overrightarrow{OP_0} + \overrightarrow{P_0P}$$

as shown in the diagram.

Introduction

If we take any two non-collinear vectors in the plane, then any arbitrary vector in the plane (such as $\overrightarrow{P_0P}$) can be expressed as a vector sum of scalar multiples of these two vectors. Let \vec{a} and \vec{b} be two such vectors in the plane. Then $\vec{sa} + t\vec{b} = \overrightarrow{P_0P}$, for some $s, t \in \mathbb{R}$ as shown in the diagram. This vector $\vec{sa} + t\vec{b}$ is called a linear combination of vectors \vec{a} and \vec{b} . 0 Substituting this into equation (1), $\overrightarrow{OP} = \overrightarrow{OP_0} + \overrightarrow{P_0P}$, /xwe get $\overrightarrow{OP} = \overrightarrow{OP_0} + s\vec{a} + t\vec{b}, \ s,t \in \mathbb{R}$ which is the vector equation of the plane.

The vector equation of a plane, $\overrightarrow{OP} = \overrightarrow{OP_0} + s\vec{a} + t\vec{b}$, gives the position vector \overrightarrow{OP} of any point P(x, y, z) in the plane. It is written as the sum of the position vector $\overrightarrow{OP_0}$ of any fixed point $P_0(x_0, y_0, z_0)$ in the plane and a linear combination of any two non-collinear vectors, \vec{a} and \vec{b} , that lie in the plane. An alternative method of writing the vector equation is to let $\vec{r} = \overrightarrow{OP}$ and $\overrightarrow{r_0} = \overrightarrow{OP_0}$, giving

 $ec{r}=ec{r_0}+sec{a}+tec{b},\ s,t\in\mathbb{R}$

 $s\overline{a}$

y

Parametric Equations of a Plane

Rewriting the vector equation of a plane into its x, y, and z components, we get

$$ec{r} = ec{r_0} + sec{a} + tec{b}, \; s,t \in \mathbb{R} \ (x,y,z) = (x_0,y_0,z_0) + s(a_1,a_2,a_3) + t(b_1,b_2,b_3), \; s,t \in \mathbb{R}$$

We then see that the parametric equations of a plane are

 $egin{array}{ll} x = x_0 + sa_1 + tb_1 \ y = y_0 + sa_2 + tb_2 \ z = z_0 + sa_3 + tb_3, \;\; s,t \in \mathbb{R} \end{array}$

Examples

Example 1

Points U(3, 0, -1), V(-3, 1, 2), and W(4, 7, -1) lie in a plane. Find the vector and parametric equations of the plane.

Solution

The vector equation of a plane requires a point in the plane and two non-collinear vectors. Observe that $\overrightarrow{UV} = (-6, 1, 3)$ and $\overrightarrow{UW} = (1, 7, 0)$ are non-collinear.

We can use the position vector of any of the three points U, V, or W as $\overrightarrow{r_0}$.

Choosing $U\left(3,0,-1
ight)$ gives the vector equation of the plane as

$$ec{r}=(3,0,-1)+s(-6,1,3)+t(1,7,0), \hspace{0.3cm} s,t\in \mathbb{R}$$

from which the parametric equations are

Example 2

Does (-1, 11, 2) lie in the plane described by $ec{r} = (-6, 6, -1) + s(3, 4, 0) + t(8, -1, -3), s, t \in \mathbb{R}?$

Examples

Example 2

Does (-1, 11, 2) lie in the plane described by $ec{r} = (-6, 6, -1) + s(3, 4, 0) + t(8, -1, -3), s, t \in \mathbb{R}$?

Solution

If the point lies in the plane, its coordinates must satisfy the parametric equations.

(1)
$$-1 = -6 + 3s + 8t$$

(2) $11 = 6 + 4s - t$
(3) $2 = -1 - 3t$

From equation (3), we solve to get t = -1. Substituting t = -1 into (2) gives

$$11 = 6 + 4s + 1$$

 $4 = 4s$
 $s = 1$

So, s = 1 and t = -1. Finally, we check if these values for the parameters satisfy equation (1).

Since $-6 + 3s + 8t = -6 + 3(1) + 8(-1) = -11 \neq -1$, then (-1, 11, 2) does not lie in the plane.

Examples

Example 3

Two parallel (and distinct) lines $\overrightarrow{r_1}=(1,0,-2)+s(2,-4,4), \;\;s\in\mathbb{R}$ and $\overrightarrow{r_2} = (-2,3,0) + t(-1,2,-2), t \in \mathbb{R}$ lie in a plane. Find the equation of the plane.

Solution

The direction vector (-1, 2, -2) is a vector in the plane.

To obtain a second non-collinear vector in the plane, we determine the vector between the two given points on the lines; this is the vector (-2, 3, 0) - (1, 0, -2) = (-3, 3, 2).

Choosing (1,0,-2) as a fixed point in the plane, we get a vector equation for the plane to be

 $ec{r}=(1,0,-2)+c(-1,2,-2)+k(-3,3,2), \;\; c,k\in \mathbb{R}$

Examples

Example 4

Determine the vector and parametric equations of the plane that contains the line $\overrightarrow{r_1}=(3,5,-1)+s(1,1,2),\ s\in\mathbb{R}$ and is parallel to the line $\overrightarrow{r_2}=(-2,0,4)+t(-2,1,8),\ t\in\mathbb{R}.$ Solution Since the plane contains the line $\overrightarrow{r_1}=(3,5,-1)+s(1,1,2)$, then the point (3,5,-1) $\overline{r_2}$ lies on the plane and $\overrightarrow{d_1} = (1,1,2)$ is a direction vector for the plane. The plane is also parallel to the line $\overrightarrow{r_1}$ $\overrightarrow{r_2}=(-2,0,4)+t(-2,1,8)$, and so $\overrightarrow{d_2}=(-2,1,8)$ is a second direction vector for the plane. Since (-2, 1, 8) is not a scalar multiple of (1, 1, 2), the direction vectors are not parallel. Therefore, the vector equation of the plane is $ec{r}=(3,5,-1)+c(-2,1,8)+k(1,1,2), \;\; c,k\in \mathbb{R}$ and the parametric equations for the plane are x = 3 - 2c + ky = 5 + c + k

 $z=-1+8c+2k, \;\; c,k\in \mathbb{R}$