| \(1\) |
\( \begin{align*} (n+1)^2-n^2 &= (1+1)^2 - 1^2 \\ &= 2^2 - 1^2 \\ &= 3 \end{align*}\) |
\(\begin{align*} 2n+1 &= 2(1) +1 \\ &= 3 \end{align*}\) |
| \(2\) |
\( \begin{align*} (n+1)^2-n^2 &= (2+1)^2 - 2^2 \\ &= 3^2 - 2^2 \\ &= 5 \end{align*}\) |
\(\begin{align*} 2n+1 &= 2(2) +1 \\ &= 5 \end{align*}\) |
| \(3\) |
\( \begin{align*} (n+1)^2-n^2 &= (3+1)^2 - 3^2 \\ &= 4^2 - 3^2 \\ &= 7 \end{align*}\) |
\(\begin{align*} 2n+1 &= 2(3) +1 \\ &= 7 \end{align*}\) |
| \(4\) |
\( \begin{align*} (n+1)^2-n^2 &= (4+1)^2 - 4^2 \\ &= 5^2 - 4^2 \\ &= 9 \end{align*}\) |
\(\begin{align*} 2n+1 &= 2(4) +1 \\ &= 9 \end{align*}\) |
| \(5\) |
\( \begin{align*} (n+1)^2-n^2 &= (5+1)^2 - 5^2 \\ &= 6^2 - 5^2 \\ &= 11 \end{align*}\) |
\(\begin{align*} 2n+1 &= 2(5) +1 \\ &= 11 \end{align*}\) |