\(6, ~7, ~8,~ 9, \ldots\)
General Term:term number \(+~5\)
How did we come up with the general term of this sequence?
| Term Number |
\(1\) |
\(2\) |
\(3\) |
\(4\) |
\(\cdots\) |
\(10\) |
\(\cdots\) |
\(17\) |
\(\cdots\) |
term number |
Number of Triangles |
\(\begin{align*} \class{timed add3-cover remove9-cover}{\class{hl2}{\large\downarrow}} & \class{timed add3-cover remove9-cover}{\class{hl2}{\scriptsize{+5}}} \\ 6 & \end{align*}\) |
\(\begin{align*} \class{timed add3-cover remove11-cover}{\class{hl2}{\large\downarrow}} & \class{timed add3-cover remove11-cover}{\class{hl2}{\scriptsize{+5}}} \\ 7& \end{align*}\) |
\(\begin{align*} \class{timed add3-cover remove12-cover}{\class{hl2}{\large\downarrow}} & \class{timed add3-cover remove12-cover}{\class{hl2}{\scriptsize{+5}}} \\ 8 & \end{align*}\) |
\(\begin{align*} \class{timed add3-cover remove13-cover}{\class{hl2}{\large\downarrow}} & \class{timed add3-cover remove13-cover}{\class{hl2}{\scriptsize{+5}}} \\ 9 & \end{align*}\) |
\(\cdots\) |
\(\begin{align*} \class{hl2}{\large\downarrow} & \class{hl2}{\scriptsize{+5}} \\ \class{timed in16}{15} \end{align*}\) |
\(\cdots\) |
\(\begin{align*} \class{hl2}{\large\downarrow} & \class{hl2}{\scriptsize{+5}} \\ \class{timed in19}{22} \end{align*}\) |
\(\cdots\) |
term number \(+~5\) |
Pattern Rule: Start at \(6\) and add \(1\) each time.
\(6,\class{hl2}{\overset{+1}{\longrightarrow}} 7, \class{hl2}{\overset{+1}{\longrightarrow}} 8,\class{hl2}{\overset{+1}{\longrightarrow}} 9, \ldots\)