Solving Multi-Step Equations


Slide Notes

Glossary

All Slides

 

Example 1

Solve \(2(m+3)=4\).

 

Example 1 Continued

Solve \(2(m+3)=4\).

Solution 2

 

Example 2

Solve \(7g=8+5g\) and check your answer.

 

Example 2 Continued

Solve \(7g=8+5g\) and check your answer.

Check Your Answer

\(\text{LS}\)

 \(=7g\)

 

 \(=(7)(4)\)

 

 \(=28\)

\(\text{RS}\)

 \(=8+5g\)

 

 \(=8+5(4)\)

 

 \(=8+20\)

 

 \(=28\)

 

Example 3

Solve \(6w+5=9w-10\).

 

Example 3 Continued

Solve \(6w+5=9w-10\).

Solution 2

Since the coefficients of \(w\) are \(6\) and \(9\), leave the one with the higher coefficient, \(9w\), on the right side and move \(6w\) from the left to the right. 

\(6w+5\)

 \(=9w-10\)

 

Paused Finished
Slide /

Check Your Understanding 1


Example 4

Solve \(4(h-3)=15h+21\).

Solution

Before attempting to isolate \(h\), we will need to expand the left side to remove the brackets, since both sides are not divisible by \(4\).

\(\begin{align*} 4(h-3)&=15h+21\\ 4(h)+4(-3)&=15h+21\\ 4h-12&=15h+21 \end{align*}\)

Now this looks like a question that we have seen before, with both variable and constant terms on both sides of the equal sign. Use inverse operations in one step (as shown) or two steps to isolate \(h\).

\(\begin{align*} 4h-12&=15h+21\\ -12-21&=15h-4h\\ -33&=11h\\ \frac{-33}{11}&=h\\ -3&=h \end{align*}\)

Example 5

Solve \(4(m-2)=5(m+4)\) and check your answer.

Solution

Multiply to remove the brackets, then use inverse operations to isolate \(m\).

\(\begin{align*} 4(m-2)&=5(m+4)\\ 4(m)+4(-2)&=5(m)+5(4)\\ 4m-8&=5m+20\\ -8-20&=5m-4m\\ -28&=m \end{align*}\)

Check

\(\begin{align*} \text{LS}&=4(m-2)\\ &=4(-28-2)\\ &=4(-30)\\ &=-120 \end{align*}\)

\(\begin{align*} \text{RS}&=5(m+4)\\ &=5(-28+4)\\ &=5(-24)\\ &=-120 \end{align*}\)

Since \(\text{LS}=\text{RS}\), \(m=-28\) is the correct solution.


Check Your Understanding 2


Example 6

An integer is multiplied by \(6\), and then it is subtracted from \(50\). The result is \(8\). What is the integer?   

Solution

In order to find the integer, we want to use a method that does not involve trial and error. 

To do this, we will need to complete the following:

  1. Choose a variable to represent the unknown 
    Let \(n\) be the integer.
  2. Write an equation from the given information
    If an integer is being multiplied by \(6\) and then being subtracted from \(50\), the expression to represent this would be \(50-6n \). We are told that the result is \(8\), so the equation is \(50-6n=8\).
  3. Solve the equation\[\begin{align*} 50-6n&=8\\ -6n&=8-50\\ -6n&=-42\\ n&=\frac{-42}{-6}\\ n&=7 \end{align*}\]
  4. Check the answer
    When \(7\) is multiplied by \(6\), the result is \(42\). Since \(50-42=8\), then the unknown integer must be \(7\).