Graphing Linear Relations Using the Slope and \(y\)-Intercept


Slide Notes

Glossary

All Slides

Graphing Using the Slope and \(y\)-Intercept

If we know the slope and the \(y\)-intercept of a linear relation, we can use this information to graph the relation.

 

Example 7

Create a graph of the linear relation \(y=4x-1\) using the slope and \(y\)-intercept.

 

Example 7 Continued

Create a graph of the linear relation \(y=4x-1\) using the slope and \(y\)-intercept.

Solution

  • First plot the \(y\)-intercept. We know in this example the point is \((0,-1)\).
 

Example 8

Create a graph of the linear relation \(y=-\dfrac{2}{3}x+6\) using the slope and \(y\)-intercept.

 

Example 8 — Approach 1

Create a graph of the linear relation \(y=-\dfrac{2}{3}x+6\) using the slope and \(y\)-intercept.

Solution

Approach 1

  • First, let's use a rise of \(-2\) and a run of \(3\).
 

Example 8 — Approach 1 Continued

Create a graph of the linear relation \(y=-\dfrac{2}{3}x+6\) using the slope and \(y\)-intercept.

Solution

Approach 1

  • First, plot the \(y\)-intercept at point \((0,6)\).
 

Example 8 — Approach 2

Create a graph of the linear relation \(y=-\dfrac{2}{3}x+6\) using the slope and \(y\)-intercept.

Solution

Approach 2

  • The rise is \(2\) and the run is \(-3\).
 

Example 9

Create a graph of the linear relation \(3x-4y=-12\) using the slope and \(y\)-intercept.

 

Example 9 Continued

Create a graph of the linear relation \(3x-4y=-12\) using the slope and \(y\)-intercept.

Solution

We now look at how to plot \(y=\dfrac{3}{4}x+3\).

Paused Finished
Slide /

Check Your Understanding 3