Exercises


  1. Factor fully.
    1. \(x^2-9\)
    2. \(16x^2-25\)
    3. \(81-x^2\)
    4. \(12x^3-3xy^2\)
    5. \(5x^8-405\)
    1. Using integer coefficients, determine two possible standard form quadratic relations that have zeros \(x=\pm \dfrac{7}{3}\). 
    2. Determine all possible standard form quadratic relations that have zeros \(x=\pm \dfrac{q}{p}\) for all real numbers \(\)\(p\) and \(q\) with \(p \ne 0\).
  2. Factor fully.
    1. \(x^2-8x+16\)
    2. \(16x^2+24x+9\)
    3. \(2x^3+40x^2+200x\)
    4. \(3x^3y-24x^2y+48xy\)
  3. Determine the missing terms, given that each of the following expressions is a perfect square. Write the factored form of each expression.
    1. \(\boxed{\phantom{\square\square}}-12xy+9y^2\)
    2. \(49x^6+42x^3y^5 +\boxed{\phantom{\square\square}}\)
    3. \(100x^6-300x^3+\boxed{\phantom{\square\square}}\)
  4. Complete the table.
    Relation Factored Form Zero(s) Axis of Symmetry Vertex
    \(y=x^2-9\)        
    \(y=x^2-12x+36\)        
    \(y=9x^2+12x+4\)        
  5. Factor fully by grouping.
    1. \(10x^2+2xy-15x-3y\)
    2. \(3x^2+2xy-9x-6y\)
    3. \(15xy+1+3x+5y\)
  6. Use substitution to factor fully.
    1. \((x^2+2x)^2-2(x^2+2x)-3\)
    2. \((y^4+y^2)^2-92(y^4+y^2)+180\)
  7. The relation \(y=(x^2+2x)^2-2(x^2+2x)-3\) is not quadratic, yet it is still possible to determine the zeros. Determine the zeros of \(y=(x^2+2x)^2-2(x^2+2x)-3\).
    1. Using integer coefficients, determine two possible standard form quadratic relations that have exactly one zero, namely \(x=-\dfrac{3}{4}\).
    2. Determine all possible standard form quadratic relations that have exactly one zero, namely \(x=\dfrac{q}{p}\), for all real numbers \(\)\(p\) and \(q\) with \(p \ne 0\).
  8. One factor of \(x^3+3x^2-4\) is \(x-1\). Factor \(x^3+3x^2-4\) fully.