Is \(\cos\left(\theta\right)=\sin\left(\theta\right)\) an identity statement?
\(\begin{align*} \text{LS}&=\cos\left(\theta\right)\\ &=\dfrac{x}{r} \end{align*}\)
\(\begin{align*} \text{RS}&=\sin\left(\theta\right)\\ &=\dfrac{y}{r} \end{align*}\)
The \(\text{LS}\) and \(\text{RS}\) expressions are not the same so they would be equal only when \(x=y\) or \(\theta =45^\circ+180^\circ n,n\in\mathbb{Z}\).
So \(\cos\left(\theta\right)=\sin\left(\theta\right)\) is not an identity. It is an equation that is true for some specific values of \(\theta\).