For point \(C\left(0,-3\right)\), \(x=0\), \(y=-3\), and
\(r=\sqrt{0^2+\left(-3\right)^2}=3\).
Since \(C\) is on the negative \(y\)-axis, we know \(\theta=270^\circ\).
Therefore,
\(\sin \left(270^\circ \right) =\dfrac{y}{r} = \dfrac{-3}{3}=-1 \)
\( \cos \left(270^\circ \right) =\dfrac{x}{r} = \dfrac{0}{3}=0 \)
\(\tan \left(270^\circ \right) =\dfrac{y}{x} = \dfrac{-3}{0} \textrm{ is undefined} \)