Notice \(4^{\log_{4}{\color{NavyBlue}(64)}} = {\color{NavyBlue}64}\) and \(5^{\log_{5}{ {\color{NavyBlue} \left( \frac{1}{25} \right)}}} = {\color{NavyBlue}{\dfrac{1}{25}}}\). It would seem that \(3^{\log_{3}(20)}\) should equal \(20\).
c. If we let \({\color{BrickRed}3}^{\color{Mulberry}{\log_{3}(20)}} = {\color{NavyBlue}n}\) and convert to logarithmic form, we have
\[\begin{align*} \log_{\color{BrickRed}{3}}{\color{NavyBlue}(n)} &= {\color{Mulberry}{\log_{3}(20)}} \\ \therefore n &= 20 \end{align*}\]
Thus, \(3^{\log_{3}(20)} = 20\).
In general, \(c^{\log_{c}(n)} = n\) for all \(c \gt 0,~ c \neq 1, ~n \gt 0\).
Similarly, \(\log_{c}(c^n) = n\) for all \(c \gt 0,~ c \neq 1,~ n \in \mathbb{R}\).