The points on the new function can be obtained from the mapping: \( (x, y) \rightarrow \left( x + {\color{Mulberry}2}, {\color{BrickRed}-\dfrac{1}{2}}y + {\color{Violet}4} \right) \).
Specifically,
\[\begin{align*}(x, y) &\rightarrow \left( x + {\color{Mulberry}2}, {\color{BrickRed}-\frac{1}{2}}y + {\color{Violet}4} \right) \\ \left( -1, \frac{1}{3} \right) &\rightarrow \left( 1, \frac{23}{6} \right) \\\left( 0, 1 \right) &\rightarrow \left( 2, 3.5 \right) \\ \left( 1, 3 \right) &\rightarrow \left( 3, 2.5 \right) \\ \left( 2, 9 \right) &\rightarrow \left( 4, -0.5 \right) \\\end{align*}\]
Thus, \( g(x) \) is a decreasing function with a horizontal asymptote of \( y = 4 \).